ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal Hall conductivity in the spin-triplet superconductor with broken time-reversal symmetry

182   0   0.0 ( 0 )
 نشر من قبل Yoshiki Imai
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by the spin-triplet superconductor Sr2RuO4, the thermal Hall conductivity is investigated for several pairing symmetries with broken time-reversal symmetry. In the chiral p-wave phase with a fully opened quasiparticle excitation gap, the temperature dependence of the thermal Hall conductivity has a temperature linear term associated with the topological property directly, and an exponential term, which shows a drastic change around the Lifshitz transition. Examining f-wave states as alternative candidates with $bm d=Delta_0hat{z}(k_x^2-k_y^2)(k_xpm ik_y)$ and $bm d=Delta_0hat{z}k_xk_y(k_xpm ik_y)$ with gapless quasiparticle excitations, we study the temperature dependence of the thermal Hall conductivity, where for the former state the thermal Hall conductivity has a quadratic dependence on temperature, originating from the linear dispersions, in addition to linear and exponential behavior. The obtained result may enable us to distinguish between the chiral p-wave and f-wave states in Sr2RuO4.



قيم البحث

اقرأ أيضاً

We report point contact Andreev Reflection (PCAR) measurements on a high-quality single crystal of the non-centrosymmetric superconductor Re6Zr. We observe that the PCAR spectra can be fitted by taking two isotropic superconducting gaps with Delta_1 ~ 0.79 meV and Delta_2 ~ 0.22 meV respectively, suggesting that there are at least two bands which contribute to superconductivity. Combined with the observation of time reversal symmetry breaking at the superconducting transition from muon spin relaxation measurements (Phys. Rev. Lett. 112, 107002 (2014)), our results imply an unconventional superconducting order in this compound: A multiband singlet state that breaks time reversal symmetry or a triplet state dominated by interband pairing.
109 - Qinghong Cui , Xin Wan , Kun Yang 2004
We present results of numerical studies of spin quantum Hall transitions in disordered superconductors, in which the pairing order parameter breaks time-reversal symmetry. We focus mainly on p-wave superconductors in which one of the spin components is conserved. The transport properties of the system are studied by numerically diagonalizing pairing Hamiltonians on a lattice, and by calculating the Chern and Thouless numbers of the quasiparticle states. We find that in the presence of disorder, (spin-)current carrying states exist only at discrete critical energies in the thermodynamic limit, and the spin-quantum Hall transition driven by an external Zeeman field has the same critical behavior as the usual integer quantum Hall transition of non-interacting electrons. These critical energies merge and disappear as disorder strength increases, in a manner similar to those in lattice models for integer quantum Hall transition.
The topological superconductor UPt3, has three distinct vortex phases, a strong indication of its unconventional character. Using small-angle neutron scattering we have probed the vortex lattice in the UPt3 B phase with the magnetic field along the c rystal c-axis. We find a difference in the vortex lattice configuration depending on the sign of the magnetic field relative to the field direction established upon entering the B phase at low temperature in a field sweep, showing that the vortices in this material posses an internal degree of freedom. This observation is facilitated by the discovery of a field driven non-monotonic vortex lattice rotation, driven by competing effects of the superconducting gap distortion and the vortex-core structure. From our bulk measurements we infer that the superconducting order parameter in the UPt3 B phase breaks time reversal symmetry and exhibits chiral symmetry with respect to the c-axis.
The symmetry properties of the order parameter characterize different phases of unconventional superconductors. In the case of the heavy-fermion superconductor UPt$_3$, a key question is whether its multiple superconducting phases preserve or break t ime-reversal symmetry (TRS). We tested for asymmetry in the phase shift between left and right circularly polarized light reflected from a single crystal of UPt$_3$ at normal incidence, finding that this so-called polar Kerr effect appears only below the lower of the two zero-field superconducting transition temperatures. Our results provide evidence for broken TRS in the low-temperature superconducting phase of UPt$_3$, implying a complex two-component order parameter for superconductivity in this system.
The behavior of a dc SQUID, based on a dirty point contacts between a single-band and three-band superconductor with broken time-reversal symmetry is investigated. Using earlier obtained results for Josephson effects in such systems new features in c haracteristics of a dc SQUID are revealed. It is shown that in the case of a BTRS (broken time-reversal symmetry) three-band superconductor for the applied external magnetic flux, which is divisible by the half-integer flux, strong degeneracy of ground states of a dc SQUID is taken place. This can lead to the appearance of possible multi-hysteresis loops on a dependence of a total flux in the dc SQUID from the externally applied flux. The number of these loops depends on the position of ground states of a three-band superconductor. Also it is found that dependencies of a critical current on applied magnetic flux can have complicated multi-periodic forms, which are differ from strictly periodic characteristics for conventional dc SQUIDs and Fraunhofer patterns for Josephson contacts in the external magnetic field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا