ترغب بنشر مسار تعليمي؟ اضغط هنا

Probabilistic Completeness of Randomized Possibility Graphs Applied to Bipedal Walking in Semi-unstructured Environments

68   0   0.0 ( 0 )
 نشر من قبل Michael Grey
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a theoretical analysis of a recent whole body motion planning method, the Randomized Possibility Graph, which uses a high-level decomposition of the feasibility constraint manifold in order to rapidly find routes that may lead to a solution. These routes are then examined by lower-level planners to determine feasibility. In this paper, we show that this approach is probabilistically complete for bipedal robots performing quasi-static walking in semi-unstructured environments. Furthermore, we show that the decomposition into higher and lower level planners allows for a considerably higher rate of convergence in the probability of finding a solution when one exists. We illustrate this improved convergence with a series of simulated scenarios.



قيم البحث

اقرأ أيضاً

Locomotion for legged robots poses considerable challenges when confronted by obstacles and adverse environments. Footstep planners are typically only designed for one mode of locomotion, but traversing unfavorable environments may require several fo rms of locomotion to be sequenced together, such as walking, crawling, and jumping. Multi-modal motion planners can be used to address some of these problems, but existing implementations tend to be time-consuming and are limited to quasi-static actions. This paper presents a motion planning method to traverse complex environments using multiple categories of continuous actions. To this end, this paper formulates and exploits the Possibility Graph---which uses high-level approximations of constraint manifolds to rapidly explore the possibility of actions---to utilize lower-level single-action motion planners more effectively. We show that the Possibility Graph can quickly find routes through several different challenging environments which require various combinations of actions in order to traverse.
Experimental demonstration of complex robotic behaviors relies heavily on finding the correct controller gains. This painstaking process is often completed by a domain expert, requiring deep knowledge of the relationship between parameter values and the resulting behavior of the system. Even when such knowledge is possessed, it can take significant effort to navigate the nonintuitive landscape of possible parameter combinations. In this work, we explore the extent to which preference-based learning can be used to optimize controller gains online by repeatedly querying the user for their preferences. This general methodology is applied to two variants of control Lyapunov function based nonlinear controllers framed as quadratic programs, which have nice theoretic properties but are challenging to realize in practice. These controllers are successfully demonstrated both on the planar underactuated biped, AMBER, and on the 3D underactuated biped, Cassie. We experimentally evaluate the performance of the learned controllers and show that the proposed method is repeatably able to learn gains that yield stable and robust locomotion.
Navigating a large-scaled robot in unknown and cluttered height-constrained environments is challenging. Not only is a fast and reliable planning algorithm required to go around obstacles, the robot should also be able to change its intrinsic dimensi on by crouching in order to travel underneath height constrained regions. There are few mobile robots that are capable of handling such a challenge, and bipedal robots provide a solution. However, as bipedal robots have nonlinear and hybrid dynamics, trajectory planning while ensuring dynamic feasibility and safety on these robots is challenging. This paper presents an end-to-end vision-aided autonomous navigation framework which leverages three layers of planners and a variable walking height controller to enable bipedal robots to safely explore height-constrained environments. A vertically actuated Spring-Loaded Inverted Pendulum (vSLIP) model is introduced to capture the robot coupled dynamics of planar walking and vertical walking height. This reduced-order model is utilized to optimize for long-term and short-term safe trajectory plans. A variable walking height controller is leveraged to enable the bipedal robot to maintain stable periodic walking gaits while following the planned trajectory. The entire framework is tested and experimentally validated using a bipedal robot Cassie. This demonstrates reliable autonomy to drive the robot to safely avoid obstacles while walking to the goal location in various kinds of height-constrained cluttered environments.
This paper presents a framework that leverages both control theory and machine learning to obtain stable and robust bipedal locomotion without the need for manual parameter tuning. Traditionally, gaits are generated through trajectory optimization me thods and then realized experimentally -- a process that often requires extensive tuning due to differences between the models and hardware. In this work, the process of gait realization via hybrid zero dynamics (HZD) based optimization is formally combined with preference-based learning to systematically realize dynamically stable walking. Importantly, this learning approach does not require a carefully constructed reward function, but instead utilizes human pairwise preferences. The power of the proposed approach is demonstrated through two experiments on a planar biped AMBER-3M: the first with rigid point-feet, and the second with induced model uncertainty through the addition of springs where the added compliance was not accounted for in the gait generation or in the controller. In both experiments, the framework achieves stable, robust, efficient, and natural walking in fewer than 50 iterations with no reliance on a simulation environment. These results demonstrate a promising step in the unification of control theory and learning.
249 - Yuan Gao , Yan Gu 2021
Real-world applications of bipedal robot walking require accurate, real-time state estimation. State estimation for locomotion over dynamic rigid surfaces (DRS), such as elevators, ships, public transport vehicles, and aircraft, remains under-explore d, although state estimator designs for stationary rigid surfaces have been extensively studied. Addressing DRS locomotion in state estimation is a challenging problem mainly due to the nonlinear, hybrid nature of walking dynamics, the nonstationary surface-foot contact points, and hardware imperfections (e.g., limited availability, noise, and drift of onboard sensors). Towards solving this problem, we introduce an Invariant Extended Kalman Filter (InEKF) whose process and measurement models explicitly consider the DRS movement and hybrid walking behaviors while respectively satisfying the group-affine condition and invariant form. Due to these attractive properties, the estimation error convergence of the filter is provably guaranteed for hybrid DRS locomotion. The measurement model of the filter also exploits the holonomic constraint associated with the support-foot and surface orientations, under which the robots yaw angle in the world becomes observable in the presence of general DRS movement. Experimental results of bipedal walking on a rocking treadmill demonstrate the proposed filter ensures the rapid error convergence and observable base yaw angle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا