ﻻ يوجد ملخص باللغة العربية
We study the phase diagram of the two-dimensional repulsive Hubbard model with spin-dependent anisotropic hopping at half-filling. The system develops Ising antiferromagnetic long-range order already at infinitesimal repulsive interaction strength in the ground state. Outside the perturbative regime, unbiased predictions for the critical temperatures of the Ising antiferromagnet are made for representative interaction values by a variety of state-of-the-art quantum Monte Carlo methods, including the diagrammatic Monte Carlo, continuous-time determinantal Monte Carlo and path-integral Monte Carlo methods. Our findings are relevant to ultracold atom experiments in the p-orbital or with spin-dependent optical lattices.
Understanding quantum many-body states of correlated electrons is one main theme in modern condensed matter physics. Given that the Fermi-Hubbard model, the prototype of correlated electrons, has been recently realized in ultracold optical lattices,
Strongly correlated phases of matter are often described in terms of straightforward electronic patterns. This has so far been the basis for studying the Fermi-Hubbard model realized with ultracold atoms. Here, we show that artificial intelligence (A
The nonequilibrium variational-cluster approach is applied to study the real-time dynamics of the double occupancy in the one-dimensional Fermi-Hubbard model after different fast changes of hopping parameters. A simple reference system, consisting of
The $2d$ Hubbard model with nearest-neighbour hopping on the square lattice and an average of one electron per site is known to undergo an extended crossover from metallic to insulating behavior driven by proliferating antiferromagnetic correlations.
We calculate the Landau interaction function f(k,k) for the two-dimensional t-t Hubbard model on the square lattice using second and higher order perturbation theory. Within the Landau-Fermi liquid framework we discuss the behavior of spin and charge