ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectroscopic evidence of odd frequency superconducting order

71   0   0.0 ( 0 )
 نشر من قبل Jacob Linder
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin filter superconducting S/I/N tunnel junctions (NbN/GdN/TiN) show a robust and pronounced zero bias conductance peak at low temperatures, the magnitude of which is several times the normal state conductance of the junction. Such a conductance anomaly is representative of unconventional superconductivity and is interpreted as a direct signature of an odd frequency superconducting order.



قيم البحث

اقرأ أيضاً

It was previously suggested that an odd-frequency pair amplitude exists in the vicinity of boundaries in unconventional superconductors. We develop this idea and quest for a novel superconducting order parameter with an odd-frequency dependence. For this purpose, we focus on p-wave superconductors and extend the quasi-classical theory to include the odd-frequency dependence in the order parameter. Both of the frequency and spacial dependences of the order parameter are determined self-consistently. Under a finite electron-phonon interaction, it is found that an odd-frequency order parameter is stabilized near the boundary and coexists with the even-frequency one. By analyzing the induced odd-frequency pair amplitude in terms of the superconducting quasi-particle wavefunction, it is found that the mid-gap bound state generates the emergent odd-frequency order parameter.
The optical response of superconductors with odd-frequency Berezinskii pairing is studied. By using a simple model with a parabolic dispersion law and a non-magnetic disorder, the spectral function, the electron density of states, and the optical con ductivity are calculated for a few gap ansatzes. The spectral function and the electron density of states clearly reveal the gap for the Berezinskii pairing for the sufficiently strong frequency dependence of the order parameters. It is found that, similarly to the conventional BCS pairing, the odd-frequency gaps induce peaks in the real part of the conductivity, which, however, are sharper than in the BCS case. The magnitude and position of these peaks are determined by the frequency profile of the gap. The imaginary part of the optical conductivity for the Berezinskii pairing demonstrates sharp cusps that are absent in the case of the BCS superconductors. The corresponding results suggest that the Berezinskii pairing might allow for the optical transparency windows related to the onsets of the attenuation peaks in the real part of the conductivity. Thus, the study of the optical response not only provides an alternative way to probe the odd-frequency gaps but can reveal also additional features of the dynamic superconducting pairing.
125 - Audrey Cottet 2011
This work discusses theoretically the interplay between the superconducting and ferromagnetic proximity effects, in a diffusive normal metal strip in contact with a superconductor and a non-uniformly magnetized ferromagnetic insulator. The quasiparti cle density of states of the normal metal shows clear qualitative signatures of triplet correlations with spin one (TCS1). When one goes away from the superconduting contact, TCS1 focus at zero energy under the form of a peak surrounded by dips, which show a typical spatial scaling behavior. This behavior can coexist with a focusing of singlet correlations and triplet correlations with spin zero at finite but subgap energies. The simultaneous observation of both effects would enable an unambigous characterization of TCS1.
We show that vertex corrections to Migdals theorem in general induce an odd-frequency spin-triplet superconducting order parameter, which coexists with its more commonly known even-frequency spin-singlet counterpart. Fully self-consistent vertex-corr ected Eliashberg theory calculations for a two dimensional cuprate model, isotropically coupled to an Einstein phonon, confirm that both superconducting gaps are finite over a wide range of temperatures. The subordinate $d$-wave odd-frequency superconducting gap is found to be one order of magnitude smaller than the primary even-frequency $d$-wave gap. Our study provides a direct proof of concept for a previously unknown generation mechanism of odd-frequency superconductivity as well as for the generic coexistence of both superconducting states in bulk materials.
We consider physical properties of a superconductor with a recently proposed type of odd-frequency pairing that exhibits diamagnetic Meissner response (odd-dia state). Such a state was suggested in order to address stability issues arising in an odd- frequency superconducting state with paramagnetic Meissner response (odd-para state). Assuming the existence of an odd-dia state (due to a proper retarded interaction), we study its coexistence with an odd-para state. The latter is known to be generated as an induced superconducting component in, e.g., singlet superconductor/ferromagnet proximity structures or triplet superconductor/normal metal systems. Calculating the superfluid density of the mixed odd-para/odd-dia state and the Josephson current between the odd-para and odd-dia states, we find that the expressions for the currents in both cases have non-vanishing imaginary contributions and are therefore unphysical. We show that a realization of the odd-dia state implies the absence of a Hamiltonian description of the system, and suggest that there exists no physically realizable perturbation that could give rise to the spontaneous symmetry breaking necessary for an actual realization of the odd-dia superconducting state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا