ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical Random Riemann Waves in Integrable Turbulence

95   0   0.0 ( 0 )
 نشر من قبل Stephane Randoux
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine integrable turbulence (IT) in the framework of the defocusing cubic one-dimensional nonlinear Schr{o}dinger equation. This is done theoretically and experimentally, by realizing an optical fiber experiment in which the defocusing Kerr nonlinearity strongly dominates linear dispersive effects. Using a dispersive-hydrodynamic approach, we show that the development of IT can be divided into two distinct stages, the initial, pre-breaking stage being described by a system of interacting random Riemann waves. We explain the low-tailed statistics of the wave intensity in IT and show that the Riemann invariants of the asymptotic nonlinear geometric optics system represent the observable quantities that provide new insight into statistical features of the initial stage of the IT development by exhibiting stationary probability density functions.



قيم البحث

اقرأ أيضاً

We study numerically the integrable turbulence developing from strongly nonlinear partially coherent waves, in the framework of the focusing one-dimensional nonlinear Schrodinger equation. We find that shortly after the beginning of motion the turbul ence enters a state characterized by a very slow evolution of statistics (the quasi-stationary state - QSS), and we concentrate on the detailed examination of the basic statistical functions in this state depending on the shape and the width of the initial spectrum. In particular, we show that the probability density function (PDF) of wavefield intensity is nearly independent of the initial spectrum and is very well approximated by a certain Bessel function representing an integral of the product of two exponential distributions. The PDF corresponds to the value of the second-order moment of intensity equal to 4, indicating enhanced generation of rogue waves. All waves of large amplitude that we have studied are very well approximated - both in space and in time - by the rational breather solutions of either the first (the Peregrine breather), or the second orders.
We study numerically the nonlinear stage of modulational instability (MI) of cnoidal waves, in the framework of the focusing one-dimensional Nonlinear Schrodinger (NLS) equation. Cnoidal waves are the exact periodic solutions of the NLS equation and can be represented as a lattice of overlapping solitons. MI of these lattices lead to development of integrable turbulence [Zakharov V.E., Stud. Appl. Math. 122, 219-234 (2009)]. We study the major characteristics of the turbulence for dn-branch of cnoidal waves and demonstrate how these characteristics depend on the degree of overlapping between the solitons within the cnoidal wave. Integrable turbulence, that develops from MI of dn-branch of cnoidal waves, asymptotically approaches to its stationary state in oscillatory way. During this process kinetic and potential energies oscillate around their asymptotic values. The amplitudes of these oscillations decay with time as t^{-a}, 1<a<1.5, the phases contain nonlinear phase shift decaying as t^{-1/2}, and the frequency of the oscillations is equal to the double maximal growth rate of the MI, s=2g_{max}. In the asymptotic stationary state the ratio of potential to kinetic energy is equal to -2. The asymptotic PDF of wave amplitudes is close to Rayleigh distribution for cnoidal waves with strong overlapping, and is significantly non-Rayleigh one for cnoidal waves with weak overlapping of solitons. In the latter case the dynamics of the system reduces to two-soliton collisions, which occur with exponentially small rate and provide up to two-fold increase in amplitude compared with the original cnoidal wave.
We study numerically the integrable turbulence in the framework of the focusing one-dimensional nonlinear Schrodinger equation using a new method -- the growing of turbulence. We add to the equation a weak controlled pumping term and start adiabatic evolution of turbulence from statistically homogeneous Gaussian noise. After reaching a certain level of average intensity, we switch off the pumping and realize that the grown up turbulence is statistically stationary. We measure its Fourier spectrum, the probability density function (PDF) of intensity and the autocorrelation of intensity. Additionally, we show that, being adiabatic, our method produces stationary states of the integrable turbulence for the intermediate moments of pumping as well. Presently, we consider only the turbulence of relatively small level of nonlinearity; however, even this moderate turbulence is characterized by enhanced generation of rogue waves.
We examine the general question of statistical changes experienced by ensembles of nonlinear random waves propagating in systems ruled by integrable equations. In our study that enters within the framework of integrable turbulence, we specifically fo cus on optical fiber systems accurately described by the integrable one-dimensional nonlinear Schrodinger equation. We consider random complex fields having a gaussian statistics and an infinite extension at initial stage. We use numerical simulations with periodic boundary conditions and optical fiber experiments to investigate spectral and statistical changes experienced by nonlinear waves in focusing and in defocusing propagation regimes. As a result of nonlinear propagation, the power spectrum of the random wave broadens and takes exponential wings both in focusing and in defocusing regimes. Heavy-tailed deviations from gaussian statistics are observed in focusing regime while low-tailed deviations from gaussian statistics are observed in defocusing regime. After some transient evolution, the wave system is found to exhibit a statistically stationary state in which neither the probability density function of the wave field nor the spectrum change with the evolution variable. Separating fluctuations of small scale from fluctuations of large scale both in focusing and defocusing regime, we reveal the phenomenon of intermittency; i.e., small scales are characterized by large heavy-tailed deviations from Gaussian statistics, while the large ones are almost Gaussian.
180 - A. Tikan , C. Billet , G. El 2017
We present experimental evidence of the universal emergence of the Peregrine soliton predicted in the semi-classical (zero-dispersion) limit of the focusing nonlinear Schr{o}dinger equation [Comm. Pure Appl. Math. {bf 66}, 678 (2012)]. Experiments st udying higher-order soliton propagation in optical fiber use an optical sampling oscilloscope and frequency-resolved optical gating to characterise intensity and phase around the first point of soliton compression and the results show that the properties of the compressed pulse and background pedestal can be interpreted in terms of the Peregrine soliton. Experimental and numerical results reveal that the universal mechanism under study is highly robust and can be observed over a broad range of parameters, and experiments are in very good agreement with numerical simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا