ترغب بنشر مسار تعليمي؟ اضغط هنا

Impact of Stoichiometry of Yb2Ti2O7 on its Physical Properties

69   0   0.0 ( 0 )
 نشر من قبل Kathryn Arpino
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A series of Yb2Ti2O7 doped samples demonstrates the effects of off-stoichiometry on Yb2Ti2O7s structure, properties, and magnetic ground state via x-ray diffraction, specific heat, and magnetization measurements. A stoichiometric single crystal of Yb2Ti2O7 grown by the traveling solvent floating zone technique (solvent = 30 wt% rutile TiO2 and 70 wt% Yb2Ti2O7) is characterized and evaluated in light of this series. Our data shows that upon positive x doping, the cubic lattice parameter a increases and the Curie-Weiss temperature decreases. Heat capacity measurements of stoichiometric Yb2Ti2O7 samples exhibit a sharp, first-order peak at T = 268(4) mK that is suppressed in magnitude and temperature in samples doped off ideal stoichiometry. The full entropy recovered per Yb ion is 5.7 J/K ~ Rln2. Our work establishes the effects of doping on Yb2Ti2O7s physical properties, which provides further evidence indicating that previous crystals grown by the traditional floating zone method are doped off ideal stoichiometry. Additionally, we present how to grow high-quality colorless single crystals of Yb2Ti2O7 by the traveling solvent floating zone growth method.



قيم البحث

اقرأ أيضاً

250 - T. Wu , K. Liu , H. Chen 2008
We systematically study Raman spectroscopy of cleaved Na$_x$CoO$_2$ single crystals with 0.37 $leq$ x $leq$ 0.80. The Raman shift of A$_{1g}$ mode is found to be linearly dependent on Na content, while the Raman shift of E$_{1g}$ mode has an abnormal shift to high frequency around x = 0.5. The abnormal shift is ascribed to the occurrence of Na rearrangement in O1 structure. Temperature dependent Raman spectrum for x = 0.56 sample shows that Na rearrangement transition from O1 structure to H1 structure occurs around 240 K. Electronic transport and susceptibility for the sample with $x=0.56$ show a response to the Na rearrangement transition from O1 to H1 structure, and that different Na ordering pattern causes distinct physical properties. These results give a direct evidence to proved Na ordering effect on physical properties of Co-O plane.
85 - Chong Liu , Ke Zou 2020
Synthesis of monolayer FeSe on SrTiO3, with greatly enhanced superconductivity compared to bulk FeSe, remains difficult. Lengthy annealing within a certain temperature window is always required to achieve superconducting samples as reported by differ ent groups around the world, but the mechanism of annealing in inducing superconductivity has not been elucidated. We grow FeSe films on SrTiO3 by molecular beam epitaxy and adjust the stoichiometry by depositing additional small amounts of Fe atoms. The monolayer films become superconducting after the Fe deposition without any annealing, and show similar superconducting transition temperatures as those of the annealed films in transport measurements. We also demonstrate on the 5-unit-cell films that the FeSe multilayer can be reversibly tuned between the non-superconducting $sqrt{5} times sqrt{5}$ phase with Fe-vacancies and superconducting $1 times 1$ phase. Our results reveal that the traditional anneal process in essence removes Fe vacancies and the additional Fe deposition serves as a more efficient way to achieve superconductivity. This work highlights the significance of stoichiometry in the superconductivity of FeSe thin films and provides an easy path for superconducting samples.
We use the density functional theory and lattice dynamics calculations to investigate the properties of potassium superoxide KO$_2$ in which spin, orbital, and lattice degrees of freedom are interrelated and determine the low-temperature phase. After calculating phonon dispersion relations in the high-temperature tetragonal $I4/mmm$ structure, we identify a soft phonon mode leading to the monoclinic $C2/c$ symmetry and optimize the crystal geometry resulting from this mode. Thus we reveal a displacive character of the structural transition with the group-subgroup relation between the tetragonal and monoclinic phases. We compare the electronic structure of KO$_2$ with antiferromagnetic spin order in the tetragonal and monoclinic phases. We emphasize that realistic treatment of the electronic structure requires including the local Coulomb interaction $U$ in the valence orbitals of the O$^-_2$ ions. The presence of the `Hubbard $U$ leads to the gap opening at the Fermi energy in the tetragonal structure without orbital order but with weak spin-orbit interaction. We remark that the gap opening in the tetragonal phase could also be obtained when the orbital order is initiated in the calculations with a realistic value of $U$. Finally, we show that the local Coulomb interactions and the finite lattice distortion, which together lead to the orbital order via the Jahn-Teller effect, are responsible for the enhanced insulating gap in the monoclinic structure.
We have succeeded in preparing high-quality Gd-doped single-crystalline EuO films. Using Eu-distillation-assisted molecular beam epitaxy and a systematic variation in the Gd and oxygen deposition rates, we have been able to observe sustained layer-by -layer epitaxial growth on yttria-stabilized cubic zirconia (001). The presence of Gd helps to stabilize the layer-by-layer growth mode. We used soft x-ray absorption spectroscopy at the Eu and Gd M4,5 edges to confirm the absence of Eu3+ contaminants and to determine the actual Gd concentration. The distillation process ensures the absence of oxygen vacancies in the films. From magnetization measurements we found the Curie temperature to increase smoothly as a function of doping from 70 K up to a maximum of 125 K. A threshold behavior was not observed for concentrations as low as 0.2%.
126 - A.D. Rata , A.R.Chezan , T.Hibma 2003
We have succeeded in growing epitaxial films of rocksalt VOx on MgO(001) substrates. The oxygen content as a function of oxygen flux was determined using 18O2-RBS and the vanadium valence using XAS. The upper and lower stoichiometry limits found are similar to the ones known for bulk material (0.8<x<1.3). From the RHEED oscillation period a large number of vacancies for both vanadium and oxygen were deduced, i.e. ~16% for stoichiometric VO. These numbers are, surprisingly, very similar to those for bulk material and consequently quite strain-insensitive. XAS measurements reveal that the vacancies give rise to strong low symmetry ligand fields to be present. The electrical conductivity of the films is much lower than the conductivity of bulk samples which we attribute to a decrease in the direct overlap between t2g orbitals in the coherently strained layers. The temperature dependence of the conductivity is consistent with a variable range hopping mechanism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا