ﻻ يوجد ملخص باللغة العربية
Spatially extended systems can support local transient excitations in which just a part of the system is excited. The mechanisms reported so far are local excitability and excitation of a localized structure. Here we introduce an alternative mechanism based on the coexistence of two homogeneous stable states and spatial coupling. We show the existence of a threshold for perturbations of the homogeneous state. Sub-threshold perturbations decay exponentially. Super-threshold perturbations induce the emergence of a long-lived structure formed by two back to back fronts that join the two homogeneous states. While in typical excitability the trajectory follows the remnants of a limit cycle, here reinjection is provided by front interaction, such that fronts slowly approach each other until eventually annihilating. This front-mediated mechanism shows that extended systems with no oscillatory regimes can display excitability.
We demonstrate that nonlocal coupling strongly influences the dynamics of fronts connecting two equivalent states. In two prototype models we observe a large amplification in the interaction strength between two opposite fronts increasing front veloc
The FitzHugh-Nagumo equation provides a simple mathematical model of cardiac tissue as an excitable medium hosting spiral wave vortices. Here we present extensive numerical simulations studying long-term dynamics of knotted vortex string solutions fo
We study the dynamics and interaction of coaxial vortex rings in the FitzHugh-Nagumo excitable medium. We find that threading vortex rings with a vortex string results in significant qualitative differences in their evolution and interaction. In part
We study the nonlinear dynamics of two delay-coupled neural systems each modelled by excitable dynamics of FitzHugh-Nagumo type and demonstrate that bistability between the stable fixed point and limit cycle oscillations occurs for sufficiently large
Cardiac tissue and the Belousov-Zhabotinsky reaction provide two notable examples of excitable media that support scroll waves, in which a filament core is the source of spiral waves of excitation. Here we consider a novel topological configuration i