ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark Energy and Consciousness

80   0   0.0 ( 0 )
 نشر من قبل Daegene Song
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Daegene Song




اسأل ChatGPT حول البحث

One of the most important concepts in logic and the foundations of mathematics may be useful in providing an explanation for the cosmological constant problem. A connection between self-reference and consciousness has been previously discussed due to their similar nature of making a reference to itself. Vacuum observation has the property of self-reference and consciousness in the sense that the observer is observing ones own reference frame of energy. In this paper, the cyclical loop model of self-reference is applied to the vacuum observation, such that the discrepancy between the energy density resulting from the first part of the causal loop (i.e., the classical irreversible computation of the observers reference frame) and the other part of the causal loop (i.e., nondeterministic quantum evolution) corresponds to 10^(123). This effectively provides a consistent explanation of the difference between the observed and the theoretical values of the vacuum energy, namely, the cosmological constant problem.



قيم البحث

اقرأ أيضاً

245 - Daegene Song 2019
The orthodox interpretation of quantum theory treats the subject and the object on an equal footing. It has been suggested that the cyclical-time process, which resolves self-reference in consciousness, interconnects the observed universe and the min d of the subject. Based on the analogy between cryptography and language, the concept of the common innate structure of language, also known as universal grammar, may be associated with the continuity in consciousness. Extending this connection, Levi-Strausss proposal on universal culture may be considered as a shared structure of continuity among the consciousness of multiple subjects.
129 - Kevin Cahill 2019
A quantum field theory has finite zero-point energy if the sum over all boson modes $b$ of the $n$th power of the boson mass $ m_b^n $ equals the sum over all fermion modes $f$ of the $n$th power of the fermion mass $ m_f^n $ for $n= 0$, 2, and 4. Th e zero-point energy of a theory that satisfies these three conditions with otherwise random masses is huge compared to the density of dark energy. But if in addition to satisfying these conditions, the sum of $m_b^4 log m_b/mu$ over all boson modes $b$ equals the sum of $ m_f^4 log m_f/mu $ over all fermion modes $f$, then the zero-point energy of the theory is zero. The value of the mass parameter $mu$ is irrelevant in view of the third condition ($n=4$). The particles of the standard model do not remotely obey any of these four conditions. But an inclusive theory that describes the particles of the standard model, the particles of dark matter, and all particles that have not yet been detected might satisfy all four conditions if pseudomasses are associated with the mean values in the vacuum of the divergences of the interactions of the inclusive model. Dark energy then would be the finite potential energy of the inclusive theory.
Accepting the Komar mass definition of a source with energy-momentum tensor $T_{mu u}$, and using the thermodynamic pressure definition, we find a relaxed energy-momentum conservation law. Thereinafter, we study some cosmological consequences of the obtained energy-momentum conservation law. It has been found out that the dark sectors of cosmos are unifiable into one cosmic fluid in our setup. While this cosmic fluid impels the universe to enter an accelerated expansion phase, it may even show a baryonic behavior by itself during the cosmos evolution. Indeed, in this manner, while $T_{mu u}$ behaves baryonically, some parts of it, namely $T_{mu u}(e)$ which is satisfying the ordinary energy-momentum conservation law, are responsible for the current accelerated expansion.
We suggest that the eventual gravitational repulsion between matter and antimatter may be a key for understanding of the nature of dark matter and dark energy. If there is gravitational repulsion, virtual particle-antiparticle pairs in the vacuum, ma y be considered as gravitational dipoles. We use a simple toy model to reveal a first indication that the gravitational polarization of such a vacuum, caused by baryonic matter in a Galaxy, may produce the same effect as supposed existence of dark matter. In addition, we argue that cancellation of gravitational charges in virtual particle-antiparticle pairs, may be a basis for a solution of the cosmological constant problem and identification of dark energy with vacuum energy. Hence, it may be that dark matter and dark energy are not new, unknown forms of matter-energy but an effect of complex interaction between quantum vacuum and known baryonic matter.
107 - Kenath Arun 2017
The nature of dark matter (DM) and dark energy (DE) which is supposed to constitute about 95% of the energy density of the universe is still a mystery. There is no shortage of ideas regarding the nature of both. While some candidates for DM are clear ly ruled out, there is still a plethora of viable particles that fit the bill. In the context of DE, while current observations favour a cosmological constant picture, there are other competing models that are equally likely. This paper reviews the different possible candidates for DM including exotic candidates and their possible detection. This review also covers the different models for DE and the possibility of unified models for DM and DE. Keeping in mind the negative results in some of the ongoing DM detection experiments, here we also review the possible alternatives to both DM and DE (such as MOND and modifications of general relativity) and possible means of observationally distinguishing between the alternatives.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا