Universal Peregrine soliton structure in nonlinear pulse compression in optical fiber


الملخص بالإنكليزية

We present experimental evidence of the universal emergence of the Peregrine soliton predicted in the semi-classical (zero-dispersion) limit of the focusing nonlinear Schr{o}dinger equation [Comm. Pure Appl. Math. {bf 66}, 678 (2012)]. Experiments studying higher-order soliton propagation in optical fiber use an optical sampling oscilloscope and frequency-resolved optical gating to characterise intensity and phase around the first point of soliton compression and the results show that the properties of the compressed pulse and background pedestal can be interpreted in terms of the Peregrine soliton. Experimental and numerical results reveal that the universal mechanism under study is highly robust and can be observed over a broad range of parameters, and experiments are in very good agreement with numerical simulations.

تحميل البحث