ﻻ يوجد ملخص باللغة العربية
We study two notions of stability in multiwinner elections that are based on the Condorcet criterion. The first notion was introduced by Gehrlein: A committee is stable if each committee member is preferred to each non-member by a (possibly weak) majority of voters. The second notion is called local stability (introduced in this paper): A size-$k$ committee is locally stable in an election with $n$ voters if there is no candidate $c$ and no group of more than $frac{n}{k+1}$ voters such that each voter in this group prefers $c$ to each committee member. We argue that Gehrlein-stable committees are appropriate for shortlisting tasks, and that locally stable committees are better suited for applications that require proportional representation. The goal of this paper is to analyze these notions in detail, explore their compatibility with notions of proportionality, and investigate the computational complexity of related algorithmic tasks.
We consider the algorithmic question of choosing a subset of candidates of a given size $k$ from a set of $m$ candidates, with knowledge of voters ordinal rankings over all candidates. We consider the well-known and classic scoring rule for achieving
A preference profile is single-peaked on a tree if the candidate set can be equipped with a tree structure so that the preferences of each voter are decreasing from their top candidate along all paths in the tree. This notion was introduced by Demang
Shortlisting is the task of reducing a long list of alternatives to a (smaller) set of best or most suitable alternatives from which a final winner will be chosen. Shortlisting is often used in the nomination process of awards or in recommender syste
Elections involving a very large voter population often lead to outcomes that surprise many. This is particularly important for the elections in which results affect the economy of a sizable population. A better prediction of the true outcome helps r
Justified representation (JR) is a standard notion of representation in multiwinner approval voting. Not only does a JR committee always exist, but previous work has also shown through experiments that the JR condition can typically be fulfilled by g