ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmic evolution of stellar quenching by AGN feedback: clues from the Horizon-AGN simulation

66   0   0.0 ( 0 )
 نشر من قبل Ricarda Sylvia Beckmann
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The observed massive end of the galaxy stellar mass function is steeper than its predicted dark matter halo counterpart in the standard $Lambda $CDM paradigm. In this paper, we investigate the impact of active galactic nuclei (AGN) feedback on star formation in massive galaxies. We isolate the impact of AGNs by comparing two simulations from the HORIZON suite, which are identical except that one also includes super massive black holes (SMBH), and related feedback models. This allows us to cross-identify individual galaxies between simulations and quantify the effect of AGN feedback on their properties, including stellar mass and gas outflows. We find that massive galaxies ($ rm M_{*} geq 10^{11} M_odot $) are quenched by AGN feedback to the extent that their stellar masses decrease by up to 80% at $z=0$. SMBHs affect their host halo through a combination of outflows that reduce their baryonic mass, particularly for galaxies in the mass range $ rm 10^9 M_odot leq M_{*} leq 10^{11} M_odot $, and a disruption of central gas inflows, which limits in-situ star formation. As a result, net gas inflows onto massive galaxies, $ rm M_{*} geq 10^{11} M_odot $, drop by up to 70%. We measure a redshift evolution in the stellar mass ratio of twin galaxies with and without AGN feedback, with galaxies of a given stellar mass showing stronger signs of quenching earlier on. This evolution is driven by a progressive flattening of the $rm M_{rm SMBH}-M_* $ relation with redshift, particularly for galaxies with $rm M_{*} leq 10^{10} M_odot $. $rm M_{rm SMBH}/M_*$ ratios decrease over time, as falling average gas densities in galaxies curb SMBH growth.



قيم البحث

اقرأ أيضاً

We analyse the demographics of black holes (BHs) in the large-volume cosmological hydrodynamical simulation Horizon-AGN. This simulation statistically models how much gas is accreted onto BHs, traces the energy deposited into their environment and, c onsequently, the back-reaction of the ambient medium on BH growth. The synthetic BHs reproduce a variety of observational constraints such as the redshift evolution of the BH mass density and the mass function. Strong self-regulation via AGN feedback, weak supernova feedback, and unresolved internal processes result in a tight BH-galaxy mass correlation. Starting at z~2, tidal stripping creates a small population of BHs over-massive with respect to the halo. The fraction of galaxies hosting a central BH or an AGN increases with stellar mass. The AGN fraction agrees better with multi-wavelength studies, than single-wavelength ones, unless obscuration is taken into account. The most massive halos present BH multiplicity, with additional BHs gained by ongoing or past mergers. In some cases, both a central and an off-centre AGN shine concurrently, producing a dual AGN. This dual AGN population dwindles with decreasing redshift, as found in observations. Specific accretion rate and Eddington ratio distributions are in good agreement with observational estimates. The BH population is dominated in turn by fast, slow, and very slow accretors, with transitions occurring at z=3 and z=2 respectively.
113 - P.N.Best , L.M.Ker , C. Simpson 2014
This paper presents the first measurement of the radio luminosity function of jet-mode (radiatively-inefficient) radio-AGN out to z=1, in order to investigate the cosmic evolution of radio-AGN feedback. Eight radio source samples are combined to prod uce a catalogue of 211 radio-loud AGN with 0.5<z<1.0, which are spectroscopically classified into jet-mode and radiative-mode (radiatively-efficient) AGN classes. Comparing with large samples of local radio-AGN from the Sloan Digital Sky Survey, the cosmic evolution of the radio luminosity function of each radio-AGN class is independently derived. Radiative-mode radio-AGN show an order of magnitude increase in space density out to z~1 at all luminosities, consistent with these AGN being fuelled by cold gas. In contrast, the space density of jet-mode radio-AGN decreases with increasing redshift at low radio luminosities (L_1.4 < 1e24 W/Hz) but increases at higher radio luminosities. Simple models are developed to explain the observed evolution. In the best-fitting models, the characteristic space density of jet-mode AGN declines with redshift in accordance with the declining space density of massive quiescent galaxies, which fuel them via cooling of gas in their hot haloes. A time delay of 1.5-2 Gyr may be present between the quenching of star formation and the onset of jet-mode radio-AGN activity. The behaviour at higher radio luminosities can be explained either by an increasing characteristic luminosity of jet-mode radio-AGN activity with redshift (roughly as (1+z) cubed) or if the jet-mode radio-AGN population also includes some contribution of cold-gas-fuelled sources seen at a time when their accretion rate was low. Higher redshifts measurements would distinguish between these possibilities.
Using a suite of three large cosmological hydrodynamical simulations, Horizon-AGN, Horizon-noAGN (no AGN feedback) and Horizon-DM (no baryons), we investigate how a typical sub-grid model for AGN feedback affects the evolution of the inner density pr ofiles of massive dark matter haloes and galaxies. Based on direct object-to-object comparisons, we find that the integrated inner mass and density slope differences between objects formed in these three simulations (hereafter, H_AGN, H_noAGN and H_DM) significantly evolve with time. More specifically, at high redshift (z~5), the mean central density profiles of H_AGN and H_noAGN dark matter haloes tend to be much steeper than their H_DM counterparts owing to the rapidly growing baryonic component and ensuing adiabatic contraction. By z~1.5, these mean halo density profiles in H_AGN have flattened, pummelled by powerful AGN activity (quasar mode): the integrated inner mass difference gaps with H_noAGN haloes have widened, and those with H_DM haloes have narrowed. Fast forward 9.5 billion years, down to z=0, and the trend reverses: H_AGN halo mean density profiles drift back to a more cusped shape as AGN feedback efficiency dwindles (radio mode), and the gaps in integrated central mass difference with H_noAGN and H_DM close and broaden respectively. On the galaxy side, the story differs noticeably. Averaged stellar profile central densities and inner slopes are monotonically reduced by AGN activity as a function of cosmic time, resulting in better agreement with local observations. As both dark matter and stellar inner density profiles respond quite sensitively to the presence of a central AGN, there is hope that future observational determinations of these quantities can be used constrain AGN feedback models.
329 - D. Wittor , M. Gaspari 2020
Turbulence in the intracluster, intragroup, and circumgalactic medium plays a crucial role in the self-regulated feeding and feedback loop of central supermassive black holes. We dissect the three-dimensional turbulent `weather in a high-resolution E ulerian simulation of active galactic nucleus (AGN) feedback, shown to be consistent with multiple multi-wavelength observables of massive galaxies. We carry out post-processing simulations of Lagrangian tracers to track the evolution of enstrophy, a proxy of turbulence, and its related sinks and sources. This allows us to isolate in depth the physical processes that determine the evolution of turbulence during the recurring strong and weak AGN feedback events, which repeat self-similarly over the Gyr evolution. We find that the evolution of enstrophy/turbulence in the gaseous halo is highly dynamic and variable over small temporal and spatial scales, similar to the chaotic weather processes on Earth. We observe major correlations between the enstrophy amplification and recurrent AGN activity, especially via its kinetic power. While advective and baroclinc motions are always sub-dominant, stretching motions are the key sources of the amplification of enstrophy, in particular along the jet/cocoon, while rarefactions decrease it throughout the bulk of the volume. This natural self-regulation is able to preserve, as ensemble, the typically-observed subsonic turbulence during cosmic time, superposed by recurrent spikes via impulsive anisotropic AGN features (wide outflows, bubbles, cocoon shocks). This study facilitates the preparation and interpretation of the thermo-kinematical observations enabled by new revolutionary X-ray IFU telescopes, such as XRISM and Athena.
The Lyman-$alpha$ forest is a powerful probe for cosmology, but it is also strongly impacted by galaxy evolution and baryonic processes such as Active Galactic Nuclei (AGN) feedback, which can redistribute mass and energy on large scales. We constrai n the signatures of AGN feedback on the 1D power spectrum of the Lyman-$alpha$ forest using a series of eight hydro-cosmological simulations performed with the Adaptative Mesh Refinement code RAMSES. This series starts from the Horizon-AGN simulation and varies the sub-grid parameters for AGN feeding, feedback and stochasticity. These simulations cover the whole plausible range of feedback and feeding parameters according to the resulting galaxy properties. AGNs globally suppress the Lyman-$alpha$ power at all scales. On large scales, the energy injection and ionization dominate over the supply of gas mass from AGN-driven galactic winds, thus suppressing power. On small scales, faster cooling of denser gas mitigates the suppression. This effect increases with decreasing redshift. We provide lower and upper limits of this signature at nine redshifts between $z=4.25$ and $z=2.0$, making it possible to account for it at post-processing stage in future work given that running simulations without AGN feedback can save considerable amounts of computing resources. Ignoring AGN feedback in cosmological inference analyses leads to strong biases with 2% shift on $sigma_8$ and 1% shift on $n_s$, which represents twice the standards deviation of the current constraints on $n_s$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا