ﻻ يوجد ملخص باللغة العربية
We explore the dynamical consequences of switching the coupling form in a system of coupled oscillators. We consider two types of switching, one where the coupling function changes periodically and one where it changes probabilistically. We find, through bifurcation diagrams and Basin Stability analysis, that there exists a window in coupling strength where the oscillations get suppressed. Beyond this window, the oscillations are revived again. A similar trend emerges with respect to the relative predominance of the coupling forms, with the largest window of fixed point dynamics arising where there is balance in the probability of occurrence of the coupling forms. Further, significantly, more rapid switching of coupling forms yields large regions of oscillation suppression. Lastly, we propose an effective model for the dynamics arising from switched coupling forms and demonstrate how this model captures the basic features observed in numerical simulations and also offers an accurate estimate of the fixed point region through linear stability analysis.
Controlling and reversing the effects of loss are major challenges in optical systems. For lasers losses need to be overcome by a sufficient amount of gain to reach the lasing threshold. We show how to turn losses into gain by steering the parameters
Complexity of dynamical networks can arise not only from the complexity of the topological structure but also from the time evolution of the topology. In this paper, we study the synchronous motion of coupled maps in time-varying complex networks bot
We analyze a stimulated revival (echo) effect for the breathing modes of the atomic oscillations in optical lattices. The effect arises from the dephasing due to the weak anharmonicity being partly reversed in time by means of additional parametric e
This work is devoted to the Keldysh model of flutter suppression and rigorous approaches to its analysis. To solve the stabilization problem in the Keldysh model we use an analog of direct Lyapunov method for differential inclusions. The results obta
Recent outbreak of the novel coronavirus COVID-19 has affected all of our lives in one way or the other. While medical researchers are working hard to find a cure and doctors/nurses to attend the affected individuals, measures such as `lockdown, `sta