ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of water at high spectral resolution in the atmosphere of 51 Peg b

52   0   0.0 ( 0 )
 نشر من قبل Jayne Birkby
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the detection of water absorption features in the dayside spectrum of the first-known hot Jupiter, 51 Peg b, confirming the star-planet system to be a double-lined spectroscopic binary. We used high-resolution (R~100,000), 3.2 micron spectra taken with CRIRES/VLT to trace the radial-velocity shift of the water features in the planets dayside atmosphere during 4 hours of its 4.23-day orbit after superior conjunction. We detect the signature of molecular absorption by water at a significance of 5.6 sigma at a systemic velocity of Vsys=-33+/-2 km/s, coincident with the host star, with a corresponding orbital velocity Kp = 133^+4.3_-3.5 km/s. This translates directly to a planet mass of Mp=0.476^+0.032_-0.031MJ, placing it at the transition boundary between Jovian and Neptunian worlds. We determine upper and lower limits on the orbital inclination of the system of 70<i (deg)<82.2. We also provide an updated orbital solution for 51 Peg b, using an extensive set of 639 stellar radial velocities measured between 1994 and 2013, finding no significant evidence of an eccentric orbit. We find no evidence of significant absorption or emission from other major carbon-bearing molecules of the planet, including methane and carbon dioxide. The atmosphere is non-inverted in the temperature-pressure region probed by these observations. The deepest absorption lines reach an observed relative contrast of 0.9x10^-3 with respect to the host star continuum flux, at an angular separation of 3 milliarcseconds. This work is consistent with a previous tentative report of K-band molecular absorption for 51 Peg b by Brogi et al. (2013).



قيم البحث

اقرأ أيضاً

High resolution spectroscopy (R > 20,000) is currently the only known method to constrain the orbital solution and atmospheric properties of non-transiting hot Jupiters. It does so by resolving the spectral features of the planet into a forest of spe ctral lines and directly observing its Doppler shift while orbiting the host star. In this study, we analyse VLT/CRIRES (R = 100,000) L-band observations of the non-transiting giant planet HD 179949 b centred around 3.5 microns. We observe a weak (3.0 sigma, or S/N = 4.8) spectral signature of H2O in absorption contained within the radial velocity of the planet at superior-conjunction, with a mild dependence on the choice of line list used for the modelling. Combining this data with previous observations in the K-band, we measure a detection significance of 8.4 sigma for an atmosphere that is most consistent with a shallow lapse-rate, solar C/O ratio, and with CO and H2O being the only major sources of opacity in this wavelength range. As the two sets of data were taken three years apart, this points to the absence of strong radial-velocity anomalies due, e.g., to variability in atmospheric circulation. We measure a projected orbital velocity for the planet of KP = (145.2 +- 2.0)kms^{-1} (1 sigma) and improve the error bars on this parameter by ~70%. However, we only marginally tighten constraints on orbital inclination (66.2 +3.7 -3.1 degrees) and planet mass (0.963 +0.036 -0.031 Jupiter masses), due to the dominant uncertainties of stellar mass and semi-major axis. Follow ups of radial-velocity planets are thus crucial to fully enable their accurate characterisation via high resolution spectroscopy.
The analysis of exoplanetary atmospheres by means of high-resolution spectroscopy is an expanding research field which provides information on chemical composition, thermal structure, atmospheric dynamics and orbital velocity of exoplanets. In this w ork, we aim at the detection of the light reflected by the exoplanet 51~Peg~b employing optical high-resolution spectroscopy. To detect the light reflected by the planetary dayside we use optical HARPS and HARPS-N spectra taken near the superior conjunction of the planet, when the flux contrast between the planet and the star is maximum. To search for the weak planetary signal, we cross-correlate the observed spectra with a high S/N stellar spectrum. We homogeneously analyze the available datasets and derive a $10^{-5}$ upper limit on the planet-to-star flux contrast in the optical. The upper limit on the planet-to-star flux contrast of $10^{-5}$ translates into a low albedo of the planetary atmosphere ($rm A_glesssim0.05-0.15$ for an assumed planetary radius in the range $rm 1.5-0.9~R_{Jup}$, as estimated from the planets mass).
We present the first exoplanet atmosphere detection made as part of the SPIRou Legacy Survey, a Large Observing Program of 300 nights exploiting the capabilities of SPIRou, the new near-infrared high-resolution (R ~ 70 000) spectro-polarimeter instal led on the Canada-France-Hawaii Telescope (CFHT; 3.6-m). We observed two transits of HD 189733, an extensively studied hot Jupiter that is known to show prominent water vapor absorption in its transmission spectrum. When combining the two transits, we successfully detect the planets water vapor absorption at 5.9 sigma using a cross-correlation t-test, or with a Delta BIC >10 using a log-likelihood calculation. Using a Bayesian retrieval framework assuming a parametrized T-P profile atmosphere models, we constrain the planet atmosphere parameters, in the region probed by our transmission spectrum, to the following values: VMR[H2O] = -4.4^{+0.4}_{-0.4}, and P_cloud >~ 0.2 bar (grey clouds), both of which are consistent with previous studies of this planet. Our retrieved water volume mixing ratio is slightly sub-solar although, combining it with the previously retrieved super-solar CO abundances from other studies would imply super-solar C/O ratio. We furthermore measure a net blue shift of the planet signal of -4.62^{+0.46}_{-0.44} km s-1, which is somewhat larger than many previous measurements and unlikely to result solely from winds in the planets atmosphere, although it could possibly be explained by a transit signal dominated by the trailing limb of the planet. This large blue shift is observed in all the different detection/retrieval methods that were performed and in each of the two transits independently.
Consideration of both low- and high-resolution transmission spectroscopy is key for obtaining a comprehensive picture of exoplanet atmospheres. In studies of transmission spectra, the continuum information is well established with low-resolution spec tra, while the shapes of individual lines are best constrained with high-resolution observations. In this work, we aim to merge high- with low-resolution transmission spectroscopy. We present the analysis of three primary transits of WASP-69b in the VIS channel of the CARMENES instrument and perform a combined low- and high-resolution analysis using additional data from HARPS-N, OSIRIS/GTC, and WFC3/HST already available in the literature. During the first CARMENES observing night, we detected the planet Na D$_{2}$ and D$_{1}$ lines at $sim 7sigma$ and $sim 3sigma$ significance levels, respectively. We measured a D$_{2}$/D$_{1}$ intensity ratio of 2.5$pm$0.7, which is in agreement with previous HARPS-N observations. Our modelling of WFC3 and OSIRIS data suggests strong Rayleigh scattering, solar to super-solar water abundance, and a highly muted Na feature in the atmosphere of this planet, in agreement with previous investigations of this target. We use the continuum information retrieved from the low-resolution spectroscopy as a prior to break the degeneracy between the Na abundance, reference pressure, and thermosphere temperature for the high-resolution spectroscopic analysis. We fit the Na D$_{1}$ and D$_{2}$ lines individually and find that the posterior distributions of the model parameters agree with each other within 1$sigma$. Our results suggest that local thermodynamic equilibrium processes can explain the observed D$_{2}$/D$_{1}$ ratio because the presence of haze opacity mutes the absorption features.
51 Eridani b is an exoplanet around a young (20 Myr) nearby (29.4 pc) F0-type star, recently discovered by direct imaging. Being only 0.5 away from its host star it is well suited for spectroscopic analysis using integral field spectrographs. We aim to refine the atmospheric properties of this and to further constrain the architecture of the system by searching for additional companions. Using the SPHERE instrument at the VLT we extend the spectral coverage of the planet to the complete Y- to H-band range and provide photometry in the K12-bands (2.11, 2.25 micron). The object is compared to other cool and peculiar dwarfs. Furthermore, the posterior probability distributions of cloudy and clear atmospheric models are explored using MCMC. We verified our methods by determining atmospheric parameters for the two benchmark brown dwarfs Gl 570D and HD 3651B. For probing the innermost region for additional companions, archival VLT-NACO (L) SAM data is used. We present the first spectrophotometric measurements in the Y- and K-bands for the planet and revise its J-band flux to values 40% fainter than previous measurements. Cloudy models with uniform cloud coverage provide a good match to the data. We derive the temperature, radius, surface gravity, metallicity and cloud sedimentation parameter f_sed. We find that the atmosphere is highly super-solar (Fe/H~1.0) with an extended, thick cloud cover of small particles. The model radius and surface gravity suggest planetary masses of about 9 M_jup. The evolutionary model only provides a lower mass limit of >2 M_jup (for pure hot-start). The cold-start model cannot explain the planets luminosity. The SPHERE and NACO/SAM detection limits probe the 51 Eri system at Solar System scales and exclude brown-dwarf companions more massive than 20 M_jup beyond separations of ~2.5 au and giant planets more massive than 2 M_jup beyond 9 au.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا