ﻻ يوجد ملخص باللغة العربية
Recent developments in magnetic field sensing with negatively charged nitrogen-vacancy centers (NV) in diamond employ magnetic-field (MF) dependent features in the photoluminescence (PL) and eliminate the need for microwaves (MW). Here, we study two approaches towards improving the magnetometric sensitivity using the ground-state level anti-crossing (GSLAC) feature of the NV center at a background MF of 102.4,mT. Following the first approach, we investigate the feature parameters for precise alignment in a dilute diamond sample; the second approach extends the sensing protocol into absorption via detection of the GSLAC in the diamond transmission of a 1042,nm laser beam. This leads to an increase of GSLAC contrast and results in a magnetometer with a sensitivity of 0.45,nT/$sqrt{text{Hz}}$ and a photon shot-noise limited sensitivity of 12.2 pT/$sqrt{rm{Hz}}$.
We propose an efficient method for calculating level anti-crossing spectra (LAC spectra) of interacting paramagnetic defect centers in crystals. By LAC spectra we mean the magnetic field dependence of the photoluminescence intensity of paramagnetic c
We report a study of the magnetic field dependence of photoluminescence of NV$^-$ centers (negatively charged nitrogen-vacancy centers) in diamond single crystals. In such a magnetic field dependence characteristic sharp features are observed, which
We report a study of the magnetic field dependence of the photo-luminescence of NV$^-$ centers (negatively charged nitrogen-vacancy centers) in diamond single crystals. In such a magnetic field dependence characteristic lines are observed, which are
We demonstrate a robust, scale-factor-free vector magnetometer, which uses a closed-loop frequency-locking scheme to simultaneously track Zeeman-split resonance pairs of nitrogen-vacancy (NV) centers in diamond. Compared with open-loop methodologies,
An efficient atom-photon-interface is a key requirement for the integration of solid-state emitters such as color centers in diamond into quantum technology applications. Just like other solid state emitters, however, their emission into free space i