ترغب بنشر مسار تعليمي؟ اضغط هنا

Diffusion of Oxygen Isotopes in Thermally Evolving Planetesimals and Size Ranges of Presolar Silicate Grains

81   0   0.0 ( 0 )
 نشر من قبل Shigeru Wakita
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Presolar grains are small particles found in meteorites through their isotopic compositions which are considerably different from those of materials in the Solar System. If some isotopes in presolar grains diffused out beyond their grain sizes when they were embedded in parent bodies of meteorites, their isotopic compositions could be washed out, and hence the grains cannot be identified as presolar grains any more. We explore this possibility for the first time by self-consistently simulating the thermal evolution of planetesimals and the diffusion length of $^{18}$O in presolar silicate grains. Our results show that presolar silicate grains smaller than $sim$ 0.03 $mu m$ cannot keep their original isotopic compositions even if the host planetesimals experienced maximum temperature as low as 600 $^{circ}$C. Since this temperature corresponds to the one experienced by petrologic type 3 chondrites, the isotopic diffusion can constrain the size of presolar silicate grains discovered in such chondrites to be larger than $sim$ 0.03 $mu m$. We also find that the diffusion lengths of $^{18}$O reach $sim$ 0.3-2 $mu m$ in planetesimals that were heated up to 700-800 $^{circ}$C. This indicates that, if the original size of presolar grains spans a range from $sim$ 0.001 $mu m$ to $sim$ 0.3 $mu m$ like that in the interstellar medium, the isotopic records of the presolar grains may be almost completely lost in such highly thermalized parent bodies. We propose that isotopic diffusion could be a key process to control the size distribution and abundance of presolar grains in some types of chondrites.



قيم البحث

اقرأ أيضاً

Chondrites are one of the most primitive objects in the solar system, and keep the record of the degree of thermal metamorphism experienced in their parent bodies. This thermal history can be classified by the petrologic type. We investigate the ther mal evolution of planetesimals to account for the current abundances (known as the fall statistics) of petrologic types 3 - 6 ordinary chondrites. We carry out a number of numerical calculations in which formation times and sizes of planetesimals are taken as parameters. We find that planetesimals that form within 2.0 Myr after the formation of Ca-Al-rich inclusions (CAIs) can contain all petrologic types of ordinary chondrites. Our results also indicate that plausible scenarios of planetesimal formation, which are consistent with the fall statistics, are that planetesimals with radii larger than 60 km start to form around 2.0 Myr after CAIs and/or that ones with radii less than 50 km should be formed within 1.5 Myr after CAIs. Thus, thermal modelling of planetesimals is important for revealing the occurrence and amount of metamorphosed chondrites, and for providing invaluable insights into planetesimal formation.
Among presolar materials recovered in meteorites, abundant SiC and Al$_{2}$O$_{3}$ grains of AGB origins were found. They showed records of C, N, O, $^{26}$Al and s-element isotopic ratios that proved invaluable in constraining the nucleosynthesis mo dels for AGB stars cite{zin,gal}. In particular, when these ratios are measured in SiC grains, they clearly reveal their prevalent origin in cool AGB circumstellar envelopes and provide information on both the local physics and the conditions at the nucleosynthesis site (the H- and He-burning layers deep inside the structure). Among the properties ascertained for the main part of the SiC data (the so-called {it mainstream} ones), we mention a large range of $^{14}$N/$^{15}$N ratios, extending below the solar value cite{mar}, and $^{12}$C/$^{13}$C ratios $gtrsim$ 30. Other classes of grains, instead, display low carbon isotopic ratios ($gtrsim 10$) and a huge dispersion for N isotopes, with cases of large $^{15}$N excess. In the same grains, isotopes currently feeded by slow neutron captures reveal the characteristic pattern expected from this process at an efficiency slightly lower than necessary to explain the solar main s-process component. Complementary constraints can be found in oxide grains, especially Al$_{2}$O$_{3}$ crystals. Here, the oxygen isotopes and the content in $^{26}$Al are of a special importance for clarifying the partial mixing processes that are known to affect evolved low-mass stars. Successes in modeling the data, as well as problems in explaining some of the mentioned isotopic ratios through current nucleosynthesis models are briefly outlined.
Rocky planetesimals in the early solar system melted internally and evolved chemically due to radiogenic heating from Al-26. Here we quantify the parametric controls on magma genesis and transport using a coupled petrological and fluid mechanical mod el of reactive two-phase flow. We find the mean grain size of silicate minerals to be a key control on magma ascent. For grain sizes larger than $approx$ 1 mm, melt segregation produces distinct radial structure and chemical stratification. This stratification is most pronounced for bodies formed at around 1 Myr after formation of Ca,Al-rich inclusions. These findings suggest a link between the time and orbital location of planetesimal formation and their subsequent structural and chemical evolution. According to our models, the evolution of partially molten planetesimal interiors falls into two categories. In the magma ocean scenario, the whole interior of a planetesimal experiences nearly complete melting, which would result in turbulent convection and core-mantle differentiation by the rainfall mechanism. In the magma sill scenario, segregating melts gradually deplete the deep interior of the radiogenic heat source. In this case, magma may form melt-rich layers beneath a cool and stable lid, while core formation would proceed by percolation. Our findings suggest that grain sizes prevalent during the internal heating stage governed magma ascent in planetesimals. Regardless of whether evolution progresses toward a magma ocean or magma sill structure, our models predict that temperature
Molecular oxygen has been detected in the coma of comet 67P/Churyumov--Gerasimenko with a mean abundance of 3.80 $pm$ 0.85% by the ROSINA mass spectrometer on board the Rosetta spacecraft. To account for the presence of this species in comet 67P/Chur yumov--Gerasimenko, it has been shown that the radiolysis of ice grains precursors of comets is a viable mechanism in low-density environments, such as molecular clouds. Here, we investigate the alternative possibility that the icy grains present in the midplane of the protosolar nebula were irradiated during their vertical transport between the midplane and the upper layers over a large number of cycles, as a result of turbulent mixing. Consequently, these grains spent a non-negligible fraction of their lifetime in the disks upper regions, where the irradiation by cosmic rays was strong. To do so, we used a coupled disk-transport-irradiation model to calculate the time evolution of the molecular oxygen abundance radiolytically produced in ice grains. Our computations show that, even if a significant fraction of the icy particles have followed a back and forth cycle towards the upper layers of the disk over 10 million of years, a timespan far exceeding the formation timescale of comet 67P/Churyumov--Gerasimenko, the amount of produced molecular oxygen is at least two orders of magnitude lower than the Rosetta observations. We conclude that the most likely scenario remains the formation of molecular oxygen in low-density environments, such as the presolar cloud, prior to the genesis of the protosolar nebula.
Some very large (>0.1 um) presolar grains are sampled in meteorites. We reconsider the lifetime of very large grains (VLGs) in the interstellar medium focusing on interstellar shattering caused by turbulence-induced large velocity dispersions. This p ath has never been noted as a dominant mechanism of destruction. We show that, if interstellar shattering is the main mechanism of destruction of VLGs, their lifetime is estimated to be $gtrsim 10^8$ yr; in particular, very large SiC grains can survive cosmic-ray exposure time. However, most presolar SiC grains show residence times significantly shorter than 1 Gyr, which may indicate that there is a more efficient mechanism than shattering in destroying VLGs, or that VLGs have larger velocity dispersions than 10 km s$^{-1}$. We also argue that the enhanced lifetime of SiC relative to graphite can be the reason why we find SiC among $mu$m-sized presolar grains, while the abundance of SiC in the normal interstellar grains is much lower than graphite.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا