ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrically driving nuclear spin qubits with microwave photonic bangap resonators

256   0   0.0 ( 0 )
 نشر من قبل Anthony Sigillito
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electronic and nuclear spin degrees of freedom for donor impurities in semiconductors form ultra coherent two-level systems that are useful for quantum information applications. Spins naturally have magnetic dipoles, so alternating current (AC) magnetic fields are frequently used to drive spin transitions and perform quantum gates. These fields can be difficult to spatially confine to single donor qubits so alternative methods of control such as AC electric field driven spin resonance are desirable. However, donor spin qubits do not have electric dipole moments so that they can not normally be driven by electric fields. In this work we challenge that notion by demonstrating a new, all-electric-field method for controlling neutral $^{31}$P and $^{75}$As donor nuclear spins in silicon through modulation of their donor-bound electrons. This method has major advantages over magnetic field control since electric fields are easy to confine at the nanoscale. This leads to lower power requirements, higher qubit densities, and faster gate times. We also show that this form of control allows for driving nuclear spin qubits at either their resonance frequency or the first subharmonic of that frequency, thus reducing device bandwidth requirements. Interestingly, as we relax the bandwidth requirements, we demonstrate that the computational Hilbert space is expanded to include double quantum transitions, making it feasible to use all four nuclear spin states to implement nuclear-spin-based qudits in Si:As. Based on these results, one can envision novel high-density, low-power quantum computing architectures using nuclear spins in silicon.



قيم البحث

اقرأ أيضاً

Large-scale quantum computers must be built upon quantum bits that are both highly coherent and locally controllable. We demonstrate the quantum control of the electron and the nuclear spin of a single 31P atom in silicon, using a continuous microwav e magnetic field together with nanoscale electrostatic gates. The qubits are tuned into resonance with the microwave field by a local change in electric field, which induces a Stark shift of the qubit energies. This method, known as A-gate control, preserves the excellent coherence times and gate fidelities of isolated spins, and can be extended to arbitrarily many qubits without requiring multiple microwave sources.
Coplanar microwave resonators made of 330 nm-thick superconducting YBCO have been realized and characterized in a wide temperature ($T$, 2-100 K) and magnetic field ($B$, 0-7 T) range. The quality factor $Q_L$ exceeds 10$^4$ below 55 K and it slightl y decreases for increasing fields, remaining 90$%$ of $Q_L(B=0)$ for $B=7$ T and $T=2$ K. These features allow the coherent coupling of resonant photons with a spin ensemble at finite temperature and magnetic field. To demonstrate this, collective strong coupling was achieved by using DPPH organic radical placed at the magnetic antinode of the fundamental mode: the in-plane magnetic field is used to tune the spin frequency gap splitting across the single-mode cavity resonance at 7.75 GHz, where clear anticrossings are observed with a splitting as large as $sim 82$ MHz at $T=2$ K. The spin-cavity collective coupling rate is shown to scale as the square root of the number of active spins in the ensemble.
Magnetic resonance with ensembles of electron spins is nowadays performed in frequency ranges up to 240 GHz and in corresponding magnetic fields of up to 10 T. However, experiments with single electron and nuclear spins so far only reach into frequen cy ranges of several 10 GHz, where existing coplanar waveguide structures for microwave (MW) delivery are compatible with single spin readout techniques (e.g. electrical or optical readout). Here, we explore the frequency range up to 90 GHz, respectively magnetic fields of up to $approx 3,$T for single spin magnetic resonance in conjunction with optical spin readout. To this end, we develop MW resonators with optical single spin access. In our case, rectangular E-band waveguides guarantee low-loss supply of microwaves to the resonators. Three dimensional cavities, as well as coplanar waveguide resonators enhance MW fields by spatial and spectral confinement with a MW efficiency of $1.36,mathrm{mT/sqrt{W}}$. We utilize single NV centers as hosts for optically accessible spins, and show, that their properties regarding optical spin readout known from smaller fields (<0.65 T) are retained up to fields of 3 T. In addition, we demonstrate coherent control of single nuclear spins under these conditions. Furthermore, our results extend the applicable magnetic field range of a single spin magnetic field sensor. Regarding spin based quantum registers, high fields lead to a purer product basis of electron and nuclear spins, which promises improved spin lifetimes. For example, during continuous single-shot readout the $^{14}$N nuclear spin shows second-long longitudinal relaxation times.
We present a novel method to realize a multi-target-qubit controlled phase gate with one microwave photonic qubit simultaneously controlling $n-1$ target microwave photonic qubits. This gate is implemented with $n$ microwave cavities coupled to a sup erconducting flux qutrit. Each cavity hosts a microwave photonic qubit, whose two logic states are represented by the vacuum state and the single photon state of a single cavity mode, respectively. During the gate operation, the qutrit remains in the ground state and thus decoherence from the qutrit is greatly suppressed. This proposal requires only a single-step operation and thus the gate implementation is quite simple. The gate operation time is independent of the number of the qubits. In addition, this proposal does not need applying classical pulse or any measurement. Numerical simulations demonstrate that high-fidelity realization of a controlled phase gate with one microwave photonic qubit simultaneously controlling two target microwave photonic qubits is feasible with current circuit QED technology. The proposal is quite general and can be applied to implement the proposed gate in a wide range of physical systems, such as multiple microwave or optical cavities coupled to a natural or artificial $Lambda$-type three-level atom.
We implement an iterative quantum state transfer exploiting the natural dipolar couplings in a spin chain of a liquid crystal NMR system. During each iteration a finite part of the amplitude of the state is transferred and by applying an external ope ration on only the last two spins the transferred state is made to accumulate on the spin at the end point. The transfer fidelity reaches one asymptotically through increasing the number of iterations. We also implement the inverted version of the scheme which can transfer an arbitrary state from the end point to any other position of the chain and entangle any pair of spins in the chain, acting as a full quantum data bus.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا