ترغب بنشر مسار تعليمي؟ اضغط هنا

Light breeze in the local Universe

62   0   0.0 ( 0 )
 نشر من قبل Alice Concas
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze a complete spectroscopic sample of galaxies ($sim$600,000 ) drawn from Sloan Digital Sky Survey (SDSS, DR7) to look for evidence of galactic winds in the local Universe. We focus on the shape of the [OIII]$lambda$5007 emission line as a tracer of ionizing gas outflows. We stack our spectra in a fine grid of star formation rate (SFR) and stellar mass to analyze the dependence of winds on the position of galaxies in the SFR versus mass diagram. We do not find any significant evidence of broad and shifted [OIII]$lambda$5007 emission line which we interpret as no evidence of outflowing ionized gas in the global population. We have also classified these galaxies as star-forming or AGN dominated according to their position in the standard BPT diagram. We show how the average [OIII]$lambda$5007 profile changes as function of nature of the dominant ionizing source. We find that in the star-forming dominated source the oxygen line is symmetric and governed by the gravitational potential well. The AGN or composite AGN$setminus$star-formation activity objects, in contrast, display a prominent and asymmetric profile that can be well described by a broad gaussian component that is blue-shifted from a narrow symmetric core. In particular, we find that the blue wings of the average [OIII]$lambda$5007 profiles are increasingly prominent in the LINERs and Seyfert galaxies. We conclude that, in the low-redshift Universe, pure star-formation activity does not seem capable of driving ionized-gas outflows, while, the presence of optically selected AGN seems to play a primary role to drive such winds. We discuss the implications of these results for the role of the quenching mechanism in the present day Universe.



قيم البحث

اقرأ أيضاً

349 - A. Rest , B. Sinnott , D. L. Welch 2012
Astronomical light echoes, the time-dependent light scattered by dust in the vicinity of varying objects, have been recognized for over a century. Initially, their utility was thought to be confined to mapping out the three-dimensional distribution o f interstellar dust. Recently, the discovery of spectroscopically-useful light echoes around centuries-old supernovae in the Milky Way and the Large Magellanic Cloud has opened up new scientific opportunities to exploit light echoes. In this review, we describe the history of light echoes in the local Universe and cover the many new developments in both the observation of light echoes and the interpretation of the light scattered from them. Among other benefits, we highlight our new ability to spectroscopically classify outbursting objects, to view them from multiple perspectives, to obtain a spectroscopic time series of the outburst, and to establish accurate distances to the source event. We also describe the broader range of variable objects whose properties may be better understood from light echo observations. Finally, we discuss the prospects of new light echo techniques not yet realized in practice.
Due to their production sites, as well as to how they are processed and destroyed in stars, the light elements are excellent tools to investigate a number of crucial issues in modern astrophysics: from stellar structure and non-standard processes in stellar interiors to age dating of stars; from pre-main sequence evolution to the star formation histories of young clusters and associations and to multiple populations in globular clusters; from Big Bang nucleosynthesis to the formation and chemical enrichment history of the Milky Way Galaxy, just to cite some relevant examples. In this paper, we focus on lithium, beryllium, and boron and on carbon, nitrogen, and oxygen. LiBeB are rare elements, with negligible abundances with respect to hydrogen; on the contrary, CNO are among the most abundant elements in the Universe. Pioneering observations of light-element surface abundances in stars started almost 70 years ago and huge progress has been achieved since then. Indeed, for different reasons, precise measurements of LiBeB and CNO are difficult, even in our Sun; however, the advent of state-of-the-art ground- and space-based instrumentation has allowed the determination of high-quality abundances in stars of different type, belonging to different Galactic populations. Noticeably, the recent large spectroscopic surveys performed with multifiber spectrographs have yielded detailed and homogeneous information on the abundances of Li and CNO for statistically significant samples of stars; this has allowed us to obtain new results and insights and, at the same time, raise new questions and challenges. A complete understanding of the light-element patterns and evolution in the Universe has not been still achieved. Perspectives for further progress will open up soon thanks to the new generation instrumentation that is under development and will come online in the coming years.
111 - B. S. Koribalski 2016
Here I present results from individual galaxy studies and galaxy surveys in the Local Universe with particular emphasis on the spatially resolved properties of neutral hydrogen gas. The 3D nature of the data allows detailed studies of the galaxy morp hology and kinematics, their relation to local and global star formation as well as galaxy environments. I use new 3D visualisation tools to present multi-wavelength data, aided by tilted-ring models of the warped galaxy disks. Many of the algorithms and tools currently under development are essential for the exploration of upcoming large survey data, but are also highly beneficial for the analysis of current galaxy surveys.
119 - Tuba .Ikiz 2020
Spitzer/IRAC color selection is a promising technique to identify hot accreting nuclei, that is to say AGN, in galaxies. We demonstrate this using a small sample of SAURON galaxies, and explore this further. The goal of this study is to find a simple and efficient way to reveal optically obscured nuclear accretion in (nearby) galaxies. We apply an infrared selection method to the Spitzer Survey of Stellar Structures in Galaxies (S4G) sample of more than 2500 galaxies, together with its extension sample of more than 400 galaxies. We use the Spitzer colors to find galaxies in the S$^{4}$G survey containing a hot core, suggesting the presence of a strong AGN, and study the detection fraction as a function of morphological type. We test this infrared color selection method by examining the radio properties of the galaxies, using the VLA NVSS and FIRST surveys. Using the radio data, we demonstrate that galaxies displaying hot mid-infrared nuclei stand out as being (candidate) active galaxies. When using, instead of Spitzer, colors from the lower spatial resolution WISE mission, we reproduce these results. Hence multi-band infrared imaging represents a useful tool to uncover optically obscured nuclear activity in galaxies.
In this paper, we introduce the Local Volume TiNy Titans sample (LV-TNT), which is a part of a larger body of work on interacting dwarf galaxies: TNT (Stierwalt et al. 2015). This LV-TNT sample consists of 10 dwarf galaxy pairs in the Local Universe (< 30 Mpc from Milky Way), which span mass ratios of M_(*,1)/M_(*,2) < 20, projected separations < 100 kpc, and pair member masses of log(M_*/M_Sun) < 9.9. All 10 LV-TNT pairs have resolved synthesis maps of their neutral hydrogen, are located in a range of environments and captured at various interaction stages. This enables us to do a comparative study of the diffuse gas in dwarf-dwarf interactions and disentangle the gas lost due to interactions with halos of massive galaxies, from the gas lost due to mutual interaction between the dwarfs. We find that the neutral gas is extended in the interacting pairs when compared to non-paired analogs, indicating that gas is tidally pre-processed. Additionally, we find that the environment can shape the HI distributions in the form of trailing tails and that the gas is not unbound and lost to the surroundings unless the dwarf pair is residing near a massive galaxy. We conclude that a nearby, massive host galaxy is what ultimately prevents the gas from being reaccreted. Dwarf-dwarf interactions thus represent an important part of the baryon cycle of low mass galaxies, enabling the parking of gas at large distances to serve as a continual gas supply channel until accretion by a more massive host.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا