ﻻ يوجد ملخص باللغة العربية
Channelled fragmented downflows are ubiquitous in magnetized atmospheres, and have been recently addressed from an observation after a solar eruption. We study the possible back-effect of the magnetic field on the propagation of confined flows. We compare two 3D MHD simulations of dense supersonic plasma blobs downfalling along a coronal magnetic flux tube. In one, the blobs move strictly along the field lines; in the other, the initial velocity of the blobs is not perfectly aligned to the magnetic field and the field is weaker. The aligned blobs remain compact while flowing along the tube, with the generated shocks. The misaligned blobs are disrupted and merged by the chaotic shuffling of the field lines, and structured into thinner filaments; Alfven wave fronts are generated together with shocks ahead of the dense moving front. Downflowing plasma fragments can be chaotically and efficiently mixed if their motion is misaligned to field lines, with broad implications, e.g., disk accretion in protostars, coronal eruptions and rain.
The evolution of a coronal loop is studied by means of numerical simulations of the fully compressible three-dimensional magnetohydrodynamic equations using the HYPERION code. The footpoints of the loop magnetic field are advected by random motions.
In recent work, Antiochos and coworkers argued that the boundary between the open and closed field regions on the Sun can be extremely complex with narrow corridors of open flux connecting seemingly disconnected coronal holes from the main polar hole
Using extreme-ultraviolet images, we recently proposed a new and alternative formation mechanism for coronal rain along magnetically open field lines due to interchange magnetic reconnection. In this paper we report coronal rain at chromospheric and
Employing Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) multi-wavelength images, we report the coronal condensation during the magnetic reconnection (MR) between a system of open and closed coronal loops. Higher-lying magnetical
It is clear that the solar corona is being heated and that coronal magnetic fields undergo reconnection all the time. Here we attempt to show that these two facts are in fact related - i.e. coronal reconnection generates heat. This attempt must addre