ترغب بنشر مسار تعليمي؟ اضغط هنا

An infinite dimensional KAM theorem with application to two dimensional completely resonant beam equation

79   0   0.0 ( 0 )
 نشر من قبل Shidi Zhou
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we consider the completely resonant beam equation on T^2 with cubic nonlinearity on a subspace of L^2 (T^2) which will be explained later. We establish an abstract infinite dimensional KAM theorem and apply it to the completely resonant beam equation. We prove the existence of a class of Whitney smooth small amplitude quasi-periodic solutions corresponding to finite dimensional tori.



قيم البحث

اقرأ أيضاً

96 - Shidi Zhou 2017
In this paper we consider nonlinear Schrodinger systems with periodic boundary condition in high dimension. We establish an abstract infinite dimensional KAM theorem and apply it to the nonlinear Schrodinger equation systems with real Fourier Multipl ier. By establishing a block-diagonal normal form, We prove the existence of a class of Whitney smooth small amplitude quasi-periodic solutions corresponding to finite dimensional invariant tori of an associated infinite dimensional dynamical system.
147 - Mauricio Garay 2013
The KAM iterative scheme turns out to be effective in many problems arising in perturbation theory. I propose an abstract version of the KAM theorem to gather these different results.
140 - F. Gungor 2009
The conditions for a generalized Burgers equation which a priori involves nine arbitrary functions of one, or two variables to allow an infinite dimensional symmetry algebra are determined. Though this algebra can involve up to two arbitrary function s of time, it does not allow a Virasoro algebra. This result confirms that variable coefficient generalizations of a non-integrable equation should be expected to remain as such.
In this paper, we derive a simple drift condition for the stability of a class of two-dimensional Markov processes, for which one of the coordinates (also referred to as the {em phase} for convenience) has a well understood behaviour dependent on the other coordinate (also referred as {em level}). The first (phase) components transitions may depend on the second component and are only assumed to be eventually independent. The second (level) component has partially bounded jumps and it is assumed to have a negative drift given that the first one is in its stationary distribution. The results presented in this work can be applied to processes of the QBD (quasi-birth-and-death) type on the quarter- and on the half-plane, where the phase and level are interdependent. Furthermore, they provide an off-the-shelf technique to tackle stability issues for a class of two-dimensional Markov processes. These results set the stepping stones towards closing the existing gap in the literature of deriving easily verifiable conditions/criteria for two-dimensional processes with unbounded jumps and interdependence between the two components.
Invariant manifolds are of fundamental importance to the qualitative understanding of dynamical systems. In this work, we explore and extend MacKays converse KAM condition to obtain a sufficient condition for the nonexistence of invariant surfaces th at are transverse to a chosen 1D foliation. We show how useful foliations can be constructed from approximate integrals of the system. This theory is implemented numerically for two models, a particle in a two-wave potential and a Beltrami flow studied by Zaslavsky (Q-flows). These are both 3D volume-preserving flows, and they exemplify the dynamics seen in time-dependent Hamiltonian systems and incompressible fluids, respectively. Through both numerical and theoretical considerations, it is revealed how to choose foliations that capture the nonexistence of invariant tori with varying homologies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا