ترغب بنشر مسار تعليمي؟ اضغط هنا

Comprehensive routing strategy on multilayer networks

95   0   0.0 ( 0 )
 نشر من قبل Wei Wang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Designing an efficient routing strategy is of great importance to alleviate traffic congestion in multilayer networks. In this work, we design an effective routing strategy for multilayer networks by comprehensively considering the roles of nodes local structures in micro-level, as well as the macro-level differences in transmission speeds between different layers. Both numerical and analytical results indicate that our proposed routing strategy can reasonably redistribute the traffic load of the low speed layer to the high speed layer, and thus the traffic capacity of multilayer networks are significantly enhanced compared with the monolayer low speed networks. There is an optimal combination of macro- and micro-level control parameters at which can remarkably alleviate the congestion and thus maximize the traffic capacity for a given multilayer network. Moreover, we find that increasing the size and the average degree of the high speed layer can enhance the traffic capacity of multilayer networks more effectively. We finally verify that real-world network topology does not invalidate the results. The theoretical predictions agree well with the numerical simulations.



قيم البحث

اقرأ أيضاً

The controllability of a network is a theoretical problem of relevance in a variety of contexts ranging from financial markets to the brain. Until now, network controllability has been characterized only on isolated networks, while the vast majority of complex systems are formed by multilayer networks. Here we build a theoretical framework for the linear controllability of multilayer networks by mapping the problem into a combinatorial matching problem. We found that correlating the external signals in the different layers can significantly reduce the multiplex network robustness to node removal, as it can be seen in conjunction with a hybrid phase transition occurring in interacting Poisson networks. Moreover we observe that multilayer networks can stabilize the fully controllable multiplex network configuration that can be stable also when the full controllability of the single network is not stable.
Multilayer networks represent systems in which there are several topological levels each one representing one kind of interaction or interdependency between the systems elements. These networks have attracted a lot of attention recently because their study allows considering different dynamical modes concurrently. Here, we revise the main concepts and tools developed up to date. Specifically, we focus on several metrics for multilayer network characterization as well as on the spectral properties of the system, which ultimately enable for the dynamical characterization of several critical phenomena. The theoretical framework is also applied for description of real-world multilayer systems.
Multilayer networks are widespread in natural and manmade systems. Key properties of these networks are their spectral and eigenfunction characteristics, as they determine the critical properties of many dynamics occurring on top of them. In this pap er, we numerically demonstrate that the normalized localization length $beta$ of the eigenfunctions of multilayer random networks follows a simple scaling law given by $beta=x^*/(1+x^*)$, with $x^*=gamma(b_{text{eff}}^2/L)^delta$, $gamma,deltasim 1$ and $b_{text{eff}}$ being the effective bandwidth of the adjacency matrix of the network, whose size is $L=Mtimes N$. The reported scaling law for $beta$ might help to better understand criticality in multilayer networks as well as to predict the eigenfunction localization properties of them.
To improve the accuracy of network-based SIS models we introduce and study a multilayer representation of a time-dependent network. In particular, we assume that individuals have their long-term (permanent) contacts that are always present, identifyi ng in this way the first network layer. A second network layer also exists, where the same set of nodes can be connected by occasional links, created with a given probability. While links of the first layer are permanent, a link of the second layer is only activated with some probability and under the condition that the two nodes, connected by this link, are simultaneously participating to the temporary link. We develop a model for the SIS epidemic on this time-dependent network, analyze equilibrium and stability of the corresponding mean-field equations, and shed some light on the role of the temporal layer on the spreading process.
Many networks are used to transfer information or goods, in other words, they are navigated. The larger the network, the more difficult it is to navigate efficiently. Indeed, information routing in the Internet faces serious scalability problems due to its rapid growth, recently accelerated by the rise of the Internet of Things. Large networks like the Internet can be navigated efficiently if nodes, or agents, actively forward information based on hidden maps underlying these systems. However, in reality most agents will deny to forward messages, which has a cost, and navigation is impossible. Can we design appropriate incentives that lead to participation and global navigability? Here, we present an evolutionary game where agents share the value generated by successful delivery of information or goods. We show that global navigability can emerge, but its complete breakdown is possible as well. Furthermore, we show that the system tends to self-organize into local clusters of agents who participate in the navigation. This organizational principle can be exploited to favor the emergence of global navigability in the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا