ﻻ يوجد ملخص باللغة العربية
We theoretically investigate and experimentally demonstrate a procedure for conditional control and enhancement of an interferometric coupling between two qubits encoded into states of bosonic particles. Our procedure combines local coupling of one of the particles to an auxiliary mode and single-qubit quantum filtering. We experimentally verify the proposed procedure using a linear optical setup where qubits are encoded into quantum states of single photons and coupled at a beam splitter with a fixed transmittance. With our protocol, we implement a range of different effective transmittances, demonstrate both enhancement and reduction of the coupling strength, and observe dependence of two-photon bunching on the effective transmittance. To make our analysis complete, we also theoretically investigate a more general scheme where each particle is coupled to a separate auxiliary mode and show that this latter scheme enables to achieve higher implementation probability. We show that our approach can be extended also to other kinds of qubit-qubit interactions.
To realize fault-tolerant quantum computing, it is necessary to store quantum information in logical qubits with error correction functions, realized by distributing a logical state among multiple physical qubits or by encoding it in the Hilbert spac
We generate and study the entanglement properties of novel states composed of three polarisation-encoded photonic qubits. By varying a single experimental parameter we can coherently move from a fully separable state to a maximally robust W state, wh
Fixed-frequency qubits can suffer from always-on interactions that inhibit independent control. Here, we address this issue by experimentally demonstrating a superconducting architecture using qubits that comprise of two capacitively-shunted Josephso
A behavior of a two qubit system coupled by the electric capacitance has been studied quantum mechanically. We found that the interaction is essentially the same as the one for the dipole-dipole interaction; i.e., qubit-qubit coupling of the NMR quan
Photon emission and absorption by an individual qubit are essential elements for the quantum manipulation of light. Here we demonstrate the controllability of spontaneous emission of a qubit in various electromagnetic environments. The parameter regi