We consider co-rotational wave maps from the $(1+d)$-dimensional Minkowski space into the $d$-sphere for $dgeq 3$ odd. This is an energy-supercritical model which is known to exhibit finite-time blowup via self-similar solutions. Based on a method developed by the second author and Schorkhuber, we prove the asymptotic nonlinear stability of the ground-state self-similar solution.