ﻻ يوجد ملخص باللغة العربية
Deep observations are revealing a growing number of young galaxies in the first billion year of cosmic time. Compared to typical galaxies at later times, they show more extreme emission-line properties, higher star formation rates, lower masses, and smaller sizes. However, their faintness precludes studies of their chemical abundances and ionization conditions, strongly limiting our understanding of the physics driving early galaxy build-up and metal enrichment. Here we study a rare population of UV-selected, sub$-L^{*}$(z=3) galaxies at redshift 2.4$<z<$3.5 that exhibit all the rest-frame properties expected from primeval galaxies. These low-mass, highly-compact systems are rapidly-forming galaxies able to double their stellar mass in only few tens million years. They are characterized by very blue UV spectra with weak absorption features and bright nebular emission lines, which imply hard radiation fields from young hot massive stars. Their highly-ionized gas phase has strongly sub-solar carbon and oxygen abundances, with metallicities more than a factor of two lower than that found in typical galaxies of similar mass and star formation rate at $zlesssim$2.5. These young galaxies reveal an early and short stage in the assembly of their galactic structures and their chemical evolution, a vigorous phase which is likely to be dominated by the effects of gas-rich mergers, accretion of metal-poor gas and strong outflows.
We report two secure ($z=3.775, 4.012$) and one tentative ($zapprox3.767$) spectroscopic confirmations of massive and quiescent galaxies through $K$-band observations with Keck/MOSFIRE and VLT/X-Shooter. The stellar continuum emission, the absence of
Evolution in the measured rest frame ultraviolet spectral slope and ultraviolet to optical flux ratios indicate a rapid evolution in the dust obscuration of galaxies during the first 3 billion years of cosmic time (z>4). This evolution implies a chan
Massive disk galaxies like the Milky Way are expected to form at late times in traditional models of galaxy formation, but recent numerical simulations suggest that such galaxies could form as early as a billion years after the Big Bang through the a
We report the detection of CO($J$=2$to$1) emission from three massive dusty starburst galaxies at $z$$>$5 through molecular line scans in the NSFs Karl G. Jansky Very Large Array (VLA) CO Luminosity Density at High Redshift (COLDz) survey. Redshifts
How and when did galaxies form and assemble their stars and stellar mass? The answer to these questions, so crucial to astrophysics and cosmology, requires the full reconstruction of the so called cosmic star formation rate density (SFRD), i.e. the e