ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear susceptibility of a quantum spin glass under uniform transverse and random longitudinal magnetic fields

113   0   0.0 ( 0 )
 نشر من قبل Matheus Lazo Lazo
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interplay between quantum fluctuations and disorder is investigated in a spin-glass model, in the presence of a uniform transverse field $Gamma$, and a longitudinal random field following a Gaussian distribution with width $Delta$. The model is studied through the replica formalism. This study is motivated by experimental investigations on the LiHo$_x$Y$_{1-x}$F$_4$ compound, where the application of a transverse magnetic field yields rather intriguing effects, particularly related to the behavior of the nonlinear magnetic susceptibility $chi_3$, which have led to a considerable experimental and theoretical debate. We analyzed two situations, namely, $Delta$ and $Gamma$ considered as independent, as well as these two quantities related as proposed recently by some authors. In both cases, a spin-glass phase transition is found at a temperature $T_f$; moreover, $T_f$ decreases by increasing $Gamma$ towards a quantum critical point at zero temperature. The situation where $Delta$ and $Gamma$ are related appears to reproduce better the experimental observations on the LiHo$_x$Y$_{1-x}$F$_4$ compound, with the theoretical results coinciding qualitatively with measurements of the nonlinear susceptibility. In this later case, by increasing $Gamma$, $chi_3$ becomes progressively rounded, presenting a maximum at a temperature $T^*$ ($T^*>T_f$). Moreover, we also show that the random field is the main responsible for the smearing of the nonlinear susceptibility, acting significantly inside the paramagnetic phase, leading to two regimes delimited by the temperature $T^*$, one for $T_f<T<T^*$, and another one for $T>T^*$. It is argued that the conventional paramagnetic state corresponds to $T>T^*$, whereas the temperature region $T_f<T<T^*$ may be characterized by a rather unusual dynamics, possibly including Griffiths singularities.



قيم البحث

اقرأ أيضاً

URh_2Ge_2 occupies an extraordinary position among the heavy-electron 122-compounds, by exhibiting a previously unidentified form of magnetic correlations at low temperatures, instead of the usual antiferromagnetism. Here we present new results of ac and dc susceptibilities, specific heat and neutron diffraction on single-crystalline as-grown URh_2Ge_2. These data clearly indicate that crystallographic disorder on a local scale produces spin glass behavior in the sample. We therefore conclude that URh_2Ge_2 is a 3D Ising-like, random-bond, heavy-fermion spin glass.
The behavior of the nonlinear susceptibility $chi_3$ and its relation to the spin-glass transition temperature $T_f$, in the presence of random fields, are investigated. To accomplish this task, the Sherrington-Kirkpatrick model is studied through th e replica formalism, within a one-step replica-symmetry-breaking procedure. In addition, the dependence of the Almeida-Thouless eigenvalue $lambda_{rm AT}$ (replicon) on the random fields is analyzed. Particularly, in absence of random fields, the temperature $T_f$ can be traced by a divergence in the spin-glass susceptibility $chi_{rm SG}$, which presents a term inversely proportional to the replicon $lambda_{rm AT}$. As a result of a relation between $chi_{rm SG}$ and $chi_3$, the latter also presents a divergence at $T_f$, which comes as a direct consequence of $lambda_{rm AT}=0$ at $T_f$. However, our results show that, in the presence of random fields, $chi_3$ presents a rounded maximum at a temperature $T^{*}$, which does not coincide with the spin-glass transition temperature $T_f$ (i.e., $T^* > T_f$ for a given applied random field). Thus, the maximum value of $chi_3$ at $T^*$ reflects the effects of the random fields in the paramagnetic phase, instead of the non-trivial ergodicity breaking associated with the spin-glass phase transition. It is also shown that $chi_3$ still maintains a dependence on the replicon $lambda_{rm AT}$, although in a more complicated way, as compared with the case without random fields. These results are discussed in view of recent observations in the LiHo$_x$Y$_{1-x}$F$_4$ compound.
We develop a novel method based in the sparse random graph to account the interplay between geometric frustration and disorder in cluster magnetism. Our theory allows to introduce the cluster network connectivity as a controllable parameter. Two type s of inner cluster geometry are considered: triangular and tetrahedral. The theory was developed for a general, non-uniform intra-cluster interactions, but in the present paper the results presented correspond to uniform, anti-ferromagnetic (AF) intra-clusters interactions $J_{0}/J$. The clusters are represented by nodes on a finite connectivity random graph, and the inter-cluster interactions are random Gaussian distributed. The graph realizations are treated in replica theory using the formalism of order parameter functions, which allows to calculate the distribution of local fields and, as a consequence, the relevant observable. In the case of triangular cluster geometry, there is the onset of a classical Spin Liquid state at a temperature $T^{*}/J$ and then, a Cluster Spin Glass (CSG) phase at a temperature $T_{f}/J$. The CSG ground state is robust even for very weak disorder or large negative $J_{0}/J$. These results does not depend on the network connectivity. Nevertheless, variations in the connectivity strongly affect the level of frustration $f_{p}=-Theta_{CW}/T_{f}$ for large $J_{0}/J$. In contrast, for the non-frustrated tetrahedral cluster geometry, the CSG ground state is suppressed for weak disorder or large negative $J_{0}/J$. The CSG boundary phase presents a re-entrance which is dependent on the network connectivity.
The goal of the present work is to investigate the role of trivial disorder and nontrivial disorder in the three-state Hopfield model under a Gaussian random field. In order to control the nontrivial disorder, the Hebb interaction is used. This provi des a way to control the system frustration by means of the parameter a=p/N, varying from trivial randomness to a highly frustrated regime, in the thermodynamic limit. We performed the thermodynamic analysis using the one-step replica-symmetry-breaking mean field theory to obtain the order parameters and phase diagrams for several strengths of a, the anisotropy constant, and the random field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا