ﻻ يوجد ملخص باللغة العربية
The magnetic system of the pseudobinary compound Mn$_{1-x}$Co$_{x}$Ge has been studied using small-angle neutron scattering and SQUID-measurements. It is found that Mn$_{1-x}$Co$_{x}$Ge orders magnetically at low temperatures in the whole concentration range of $x in [0 div 0.9]$. Three different states of the magnetic structure have been found: a short-periodic helical state at $x leq 0.45$, a long-periodic helical state at $0.45 < x leq 0.8$, and a ferromagnetic state at $x sim 0.9$. Taking into account that the relatively large helical wavevector $k gg 1$ nm$^{-1}$ is characteristic for systems with mainly Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction, we suggest that the short-periodic helical structure at $x leq 0.45$ is based on an effective RKKY interaction. Also the decay of $k$ with increasing $x$ is ascribed to a reduction of the interaction between second nearest neighbors and, therefore, to an increase of the influence of the Dzyaloshinskiy-Moriya interaction (DMI). As a result of the competition between these two interactions the quantum phase transition from a long-range ordered (LRO) to a short-range ordered (SRO) helical structure has been observed upon increase of the Co-concentration at $x_{c1} sim 0.25$. Further increase of $x$ leads to the appearance of a double peak in the scattering profile at $0.45 < x < 0.7$. The transition from a helical structure to a ferromagnetic state found at $x = 0.9$ is caused by the weakening of DMI as compared to the cubic anisotropy. In summary, the evolution of the magnetic structure of Mn$_{1-x}$Co$_{x}$Ge with increasing $x$ is an example of a continuous transition from a helical structure based on the effective RKKY interaction to a ferromagnetic structure passing through a helical structure based on DMI.
This study presents the effect of local electronic correlations on the Heusler compounds Co$_2$Mn$_{1-x}$Fe$_x$Si as a function of the concentration $x$. The analysis has been performed by means of first-principles band-structure calculations based o
Magnetic and transport properties of Ge(1-x-y)Mn(x)Eu(y)Te crystals with chemical compositions 0.041 < x < 0.092 and 0.010 < y < 0.043 are studied. Ferromagnetic order is observed at 150 < T < 160 K. Aggregation of magnetic ions into clusters is foun
The search and exploration of new materials not found in nature is one of modern trends in pure and applied chemistry. In the present work, we report on experimental and textit{ab initio} density-functional study of the high-pressure-synthesized seri
X-ray absorption (XAS) and x-ray magnetic circular dichroism (XMCD) spectra at the L$_{2,3}$ edges of Mn in (Ge,Mn) compounds have been measured and are compared to the results of first principles calculation. Early textit{ab initio} studies show tha
The correlation between magnetic properties and microscopic structural aspects in the diluted magnetic semiconductor Ge$_{1-x}$Mn$_{x}$Te is investigated by x-ray diffraction and magnetization as a function of the Mn concentration $x$. The occurrence