ﻻ يوجد ملخص باللغة العربية
Restricted Boltzmann machines (RBMs) and their variants are usually trained by contrastive divergence (CD) learning, but the training procedure is an unsupervised learning approach, without any guidances of the background knowledge. To enhance the expression ability of traditional RBMs, in this paper, we propose pairwise constraints restricted Boltzmann machine with Gaussian visible units (pcGRBM) model, in which the learning procedure is guided by pairwise constraints and the process of encoding is conducted under these guidances. The pairwise constraints are encoded in hidden layer features of pcGRBM. Then, some pairwise hidden features of pcGRBM flock together and another part of them are separated by the guidances. In order to deal with real-valued data, the binary visible units are replaced by linear units with Gausian noise in the pcGRBM model. In the learning process of pcGRBM, the pairwise constraints are iterated transitions between visible and hidden units during CD learning procedure. Then, the proposed model is inferred by approximative gradient descent method and the corresponding learning algorithm is designed in this paper. In order to compare the availability of pcGRBM and traditional RBMs with Gaussian visible units, the features of the pcGRBM and RBMs hidden layer are used as input data for K-means, spectral clustering (SP) and affinity propagation (AP) algorithms, respectively. A thorough experimental evaluation is performed with sixteen image datasets of Microsoft Research Asia Multimedia (MSRA-MM). The experimental results show that the clustering performance of K-means, SP and AP algorithms based on pcGRBM model are significantly better than traditional RBMs. In addition, the pcGRBM model for clustering task shows better performance than some semi-supervised clustering algorithms.
The restricted Boltzmann machine is a network of stochastic units with undirected interactions between pairs of visible and hidden units. This model was popularized as a building block of deep learning architectures and has continued to play an impor
Restricted Boltzmann machines (RBMs) are energy-based neural-networks which are commonly used as the building blocks for deep architectures neural architectures. In this work, we derive a deterministic framework for the training, evaluation, and use
The variational wave functions based on neural networks have recently started to be recognized as a powerful ansatz to represent quantum many-body states accurately. In order to show the usefulness of the method among all available numerical methods,
The search for novel entangled phases of matter has lead to the recent discovery of a new class of ``entanglement transitions, exemplified by random tensor networks and monitored quantum circuits. Most known examples can be understood as some classic
Restricted Boltzmann Machines (RBMs) and models derived from them have been successfully used as basic building blocks in deep artificial neural networks for automatic features extraction, unsupervised weights initialization, but also as density esti