ﻻ يوجد ملخص باللغة العربية
OR multi-access channel is a simple model where the channel output is the Boolean OR among the Boolean channel inputs. We revisit this model, showing that employing Bloom filter, a randomized data structure, as channel inputs achieves its capacity region with joint decoding and the symmetric sum rate of $ln 2$ bits per channel use without joint decoding. We then proceed to the many-access regime where the number of potential users grows without bound, treating both activity recognition and message transmission problems, establishing scaling laws which are optimal within a constant factor, based on Bloom filter channel inputs.
This paper considers a Gaussian multiple-access channel with random user activity where the total number of users $ell_n$ and the average number of active users $k_n$ may grow with the blocklength $n$. For this channel, it studies the maximum number
We consider a Gaussian multiple-access channel where the number of transmitters grows with the blocklength $n$. For this setup, the maximum number of bits that can be transmitted reliably per unit-energy is analyzed. We show that if the number of use
We consider a Gaussian multiple-access channel with random user activity where the total number of users $ell_n$ and the average number of active users $k_n$ may be unbounded. For this channel, we characterize the maximum number of bits that can be t
We consider quantum channels with two senders and one receiver. For an arbitrary such channel, we give multi-letter characterizations of two different two-dimensional capacity regions. The first region characterizes the rates at which it is possible
This paper considers the problem of secret communication over a multiple access channel with generalized feedback. Two trusted users send independent confidential messages to an intended receiver, in the presence of a passive eavesdropper. In this se