ﻻ يوجد ملخص باللغة العربية
We investigate how the hydrostatic suppression of baryonic accretion affects the growth rate of dark matter halos during the Epoch of Reionization. By comparing halo properties in a simplistic hydrodynamic simulation in which gas only cools adiabatically, with its collisionless equivalent, we find that halo growth is slowed as hydrostatic forces prevent gas from collapsing. In our simulations, at the high redshifts relevant for reionization (between ${sim}6$ and ${sim}11$), halos that host dwarf galaxies ($lesssim 10^{9} mathrm{M_odot}$) can be reduced by up to a factor of 2 in mass due to the hydrostatic pressure of baryons. Consequently, the inclusion of baryonic effects reduces the amplitude of the low mass tail of the halo mass function by factors of 2 to 4. In addition, we find that the fraction of baryons in dark matter halos hosting dwarf galaxies at high redshift never exceeds ${sim}90%$ of the cosmic baryon fraction. When implementing baryonic processes, including cooling, star formation, supernova feedback and reionization, the suppression effects become more significant with further reductions of ${sim}30%$ to 60%. Although convergence tests suggest that the suppression may become weaker in higher resolution simulations, this suppressed growth will be important for semi-analytic models of galaxy formation, in which the halo mass inherited from an underlying N-body simulation directly determines galaxy properties. Based on the adiabatic simulation, we provide tables to account for these effects in N-body simulations, and present a modification of the halo mass function along with explanatory analytic calculations.
The highly neutral inter-galactic medium (IGM) during the Epoch of Reionization (EoR) is expected to suppress Ly$alpha$ emission with damping-wing absorption, causing nearly no Ly$alpha$ detection from star-forming galaxies at $z{sim}8$. However, spe
Motivated by recent measurements of the number density of faint AGN at high redshift, we investigate the contribution of quasars to reionization by tracking the growth of central supermassive black holes in an update of the Meraxes semi-analytic mode
We investigate the clustering properties of Lyman-break galaxies (LBGs) at $zsim6$ - $8$. Using the semi-analytical model {scshape Meraxes} constructed as part of the Dark-ages Reionization And Galaxy-formation Observables from Numerical Simulation (
We study dwarf galaxy formation at high redshift ($zge5$) using a suite of high- resolution, cosmological hydrodynamic simulations and a semi-analytic model (SAM). We focus on gas accretion, cooling and star formation in this work by isolating the re
We study the sizes, angular momenta and morphologies of high-redshift galaxies using an update of the Meraxes semi-analytic galaxy evolution model. Our model successfully reproduces a range of observations from redshifts $z=0$-$10$. We find that the