ﻻ يوجد ملخص باللغة العربية
Springer fibers are subvarieties of the flag variety parametrized by partitions; they are central objects of study in geometric representation theory. Schubert varieties are subvarieties of the flag variety that induce a well-known basis for the cohomology of the flag variety. This paper relates these two varieties combinatorially. We prove that the Betti numbers of the Springer fiber associated to a partition with at most three rows or two columns are equal to the Betti numbers of a specific union of Schubert varieties.
Springer fibers are subvarieties of the flag variety that play an important role in combinatorics and geometric representation theory. In this paper, we analyze the equivariant cohomology of Springer fibers for $GL_n(mathbb{C})$ using results of Kuma
This survey paper describes Springer fibers, which are used in one of the earliest examples of a geometric representation. We will compare and contrast them with Schubert varieties, another family of subvarieties of the flag variety that play an impo
We introduce a family of varieties $Y_{n,lambda,s}$, which we call the $Delta$-Springer varieties, that generalize the type A Springer fibers. We give an explicit presentation of the cohomology ring $H^*(Y_{n,lambda,s})$ and show that there is a symm
We study the exotic t-structure on the derived category of coherent sheaves on two-block Springer fibre (i.e. for a nilpotent matrix of type (m+n,n) in type A). The exotic t-structure has been defined by Bezrukavnikov and Mirkovic for Springer theore
The main purpose of this paper is to show that the multiplication of a Schubert polynomial of finite type $A$ by a Schur function, which we refer to as Schubert vs. Schur problem, can be understood from the multiplication in the space of dual $k$-Sch