ﻻ يوجد ملخص باللغة العربية
The strong coupling limit of cavity quantum electrodynamics (QED) implies the capability of a matter-like quantum system to coherently transform an individual excitation into a single photon within a resonant structure. This not only enables essential processes required for quantum information processing but also allows for fundamental studies of matter-light interaction. In this work we demonstrate strong coupling between the charge degree of freedom in a gate-detuned GaAs double quantum dot (DQD) and a frequency-tunable high impedance resonator realized using an array of superconducting quantum interference devices (SQUIDs). In the resonant regime, we resolve the vacuum Rabi mode splitting of size $2g/2pi = 238$ MHz at a resonator linewidth $kappa/2pi = 12$ MHz and a DQD charge qubit dephasing rate of $gamma_2/2pi = 80$ MHz extracted independently from microwave spectroscopy in the dispersive regime. Our measurements indicate a viable path towards using circuit based cavity QED for quantum information processing in semiconductor nano-structures.
Quantum-mechanical correlations of interacting fermions result in the emergence of exotic phases. Magnetic phases naturally arise in the Mott-insulator regime of the Fermi-Hubbard model, where charges are localized and the spin degree of freedom rema
We present low temperature transport measurements on double quantum dots in InAs nanowires grown by metal-organic vapor phase epitaxy. Two dots in series are created by lithographically defined top-gates with a procedure involving no extra insulating
Quantum coherence in solid-state systems has been demonstrated in superconducting circuits and in semiconductor quantum dots. This has paved the way to investigate solid-state systems for quantum information processing with the potential benefit of s
Scalable architectures for quantum information technologies require to selectively couple long-distance qubits while suppressing environmental noise and cross-talk. In semiconductor materials, the coherent coupling of a single spin on a quantum dot t
In this experiment, we couple a superconducting Transmon qubit to a high-impedance $645 Omega$ microwave resonator. Doing so leads to a large qubit-resonator coupling rate $g$, measured through a large vacuum Rabi splitting of $2gsimeq 910$ MHz. The