ﻻ يوجد ملخص باللغة العربية
We show that every subset of vertices of a directed graph E gives a Morita equivalence between a subalgebra and an ideal of the associated Leavitt path algebra. We use this observation to prove an algebraic version of a theorem of Crisp and Gow: certain subgraphs of E can be contracted to a new graph G such that the Leavitt path algebras of E and G are Morita equivalent. We provide examples to illustrate how desingularising a graph, and in- or out-delaying of a graph, all fit into this setting.
A Leavitt labelled path algebra over a commutative unital ring is associated with a labelled space, generalizing Leavitt path algebras associated with graphs and ultragraphs as well as torsion-free commutative algebras generated by idempotents. We sh
Given a graph E we define E-algebraic branching systems, show their existence and how they induce representations of the associated Leavitt path algebra. We also give sufficient conditions to guarantee faithfulness of the representations associated t
Let $E$ be a finite directed graph, and let $I$ be the poset obtained as the antisymmetrization of its set of vertices with respect to a pre-order $le$ that satisfies $vle w$ whenever there exists a directed path from $w$ to $v$. Assuming that $I$ is
We show that if $E$ is an arbitrary acyclic graph then the Leavitt path algebra $L_K(E)$ is locally $K$-matricial; that is, $L_K(E)$ is the direct union of subalgebras, each isomorphic to a finite direct sum of finite matrix rings over the field $K$.
We prove an algebraic version of the Gauge-Invariant Uniqueness Theorem, a result which gives information about the injectivity of certain homomorphisms between ${mathbb Z}$-graded algebras. As our main application of this theorem, we obtain isomorph