ﻻ يوجد ملخص باللغة العربية
We use a hybrid constituent-quark model for the microscopic description of $pi N N$, $pi N Delta$ and $pi Delta Delta$ vertices. In this model quarks are confined by an instantaneous potential and are allowed to emit and absorb a pion, which is also treated as dynamical degree of freedom. The point form of relativistic quantum mechanics is employed to achieve a relativistically invariant description of this system. Starting with an $SU(6)$ spin-flavor symmetric wave function for $N_0$ and $Delta_0$, i.e. the eigenstates of the pure confinement problem, we calculate the strength of the $pi N_0 N_0$, $pi N_0 Delta_0$ and $pi Delta_0 Delta_0$ couplings and the corresponding vertex form factors. Interestingly the ratios of the resulting couplings resemble strongly those needed in purely hadronic coupled-channel models, but deviate significantly from the ratios following from SU(6) spin-flavor symmetry in the non-relativistic constituent-quark model.
We present a microscopic description of the strong $pi NN$, $pi NDelta$ and $piDeltaDelta$ vertices. Our starting point is a constituent-quark model supplemented by an additional $3qpi$ non-valence component. In the spirit of chiral constituent-quark
We report on shell-model calculations employing effective interactions derived from a new realistic nucleon-nucleon (NN) potential based on chiral effective field theory. We present results for 18O, 134Te, and 210Po. Our results are in excellent agre
As a step toward performing a complete coupled-channels analysis of the world data of pi N, gamma^* N --> pi N, eta N, pi pi N reactions, the pi N --> pi pi N reactions are investigated starting with the dynamical coupled-channels model developed in
Fully constrained bubble chamber data on the pp -> pi+ pn and pp -> pi+ d reactions are used to investigate the ratio of the counting rates for the two processes at low pn excitation energies. Whereas the ratio is in tolerable agreement with that fou
Recent data from the PIONS$@$MAX-lab Collaboration, measuring the total cross section of the pion incoherent photoproduction $gamma dtopi^-pp$ near threshold, have been used to extract the E$_{0+}$ multipole and total cross section of the reaction $g