ﻻ يوجد ملخص باللغة العربية
As microblogging services like Twitter are becoming more and more influential in todays globalised world, its facets like sentiment analysis are being extensively studied. We are no longer constrained by our own opinion. Others opinions and sentiments play a huge role in shaping our perspective. In this paper, we build on previous works on Twitter sentiment analysis using Distant Supervision. The existing approach requires huge computation resource for analysing large number of tweets. In this paper, we propose techniques to speed up the computation process for sentiment analysis. We use tweet subjectivity to select the right training samples. We also introduce the concept of EFWS (Effective Word Score) of a tweet that is derived from polarity scores of frequently used words, which is an additional heuristic that can be used to speed up the sentiment classification with standard machine learning algorithms. We performed our experiments using 1.6 million tweets. Experimental evaluations show that our proposed technique is more efficient and has higher accuracy compared to previously proposed methods. We achieve overall accuracies of around 80% (EFWS heuristic gives an accuracy around 85%) on a training dataset of 100K tweets, which is half the size of the dataset used for the baseline model. The accuracy of our proposed model is 2-3% higher than the baseline model, and the model effectively trains at twice the speed of the baseline model.
Public sentiment (the opinions, attitudes or feelings expressed by the public) is a factor of interest for government, as it directly influences the implementation of policies. Given the unprecedented nature of the COVID-19 crisis, having an up-to-da
Traditional sentiment analysis approaches tackle problems like ternary (3-category) and fine-grained (5-category) classification by learning the tasks separately. We argue that such classification tasks are correlated and we propose a multitask appro
In real-time, social media data strongly imprints world events, popular culture, and day-to-day conversations by millions of ordinary people at a scale that is scarcely conventionalized and recorded. Vitally, and absent from many standard corpora suc
This paper describes the participation of the team TwiSE in the SemEval 2016 challenge. Specifically, we participated in Task 4, namely Sentiment Analysis in Twitter for which we implemented sentiment classification systems for subtasks A, B, C and D
One of the new scientific ways of understanding discourse dynamics is analyzing the public data of social networks. This researchs aim is Post-structuralist Discourse Analysis (PDA) of Covid-19 phenomenon (inspired by Laclau and Mouffes Discourse The