ﻻ يوجد ملخص باللغة العربية
We report the detection of oscillations in slender Ca II H fibrils (SCFs) from high-resolution observations acquired with the Sunrise balloon-borne solar observatory. The SCFs show obvious oscillations in their intensity, but also their width. The oscillatory behaviors are investigated at several positions along the axes of the SCFs. A large majority of fibrils show signs of oscillations in intensity. Their periods and phase speeds are analyzed using a wavelet analysis. The width and intensity perturbations have overlapping distributions of the wave period. The obtained distributions have median values of the period of $32pm17$s and $36pm25$s, respectively. We find that the fluctuations of both parameters propagate in the SCFs with speeds of ${11}^{+49}_{-11}$ km/s and ${15}^{+34}_{-15}$ km/s, respectively. Furthermore, the width and intensity oscillations have a strong tendency to be either in anti-phase, or, to a smaller extent, in phase. This suggests that the oscillations of both parameters are caused by the same wave mode and that the waves are likely propagating. Taking all the evidence together, the most likely wave mode to explain all measurements and criteria is the fast sausage mode.
We use seeing-free high spatial resolution Ca II H data obtained by the SUNRISE observatory to determine properties of slender fibrils in the lower solar chromosphere. In this work we use intensity images taken with the SUFI instrument in the Ca II H
A dense forest of slender bright fibrils near a small solar active region is seen in high-quality narrowband Ca II H images from the SuFI instrument onboard the Sunrise balloon-borne solar observatory. The orientation of these slender Ca II H fibrils
Solar chromospheric fibrils, as observed in the core of strong chromospheric spectral lines, extend from photospheric field concentrations suggesting that they trace magnetic field lines. These images have been historically used as proxies of magneti
Magneto-static models may overcome some of the issues facing force-free magnetic field extrapolations. So far they have seen limited use and have faced problems when applied to quiet-Sun data. Here we present a first application to an active region.
M dwarf stars are excellent candidates around which to search for exoplanets, including temperate, Earth-sized planets. To evaluate the photochemistry of the planetary atmosphere, it is essential to characterize the UV spectral energy distribution of