The Planetary Accretion Shock: I. Framework for Radiation-hydrodynamical Simulations and First Results


الملخص بالإنكليزية

The key aspect determining the post-formation luminosity of gas giants has long been considered to be the energetics of the accretion shock at the planetary surface. We use 1D radiation-hydrodynamical simulations to study the radiative loss efficiency and to obtain post-shock temperatures and pressures and thus entropies. The efficiency is defined as the fraction of the total incoming energy flux which escapes the system (roughly the Hill sphere), taking into account the energy recycling which occurs ahead of the shock in a radiative precursor. We focus here on a constant equation of state to isolate the shock physics but use constant and tabulated opacities. While robust quantitative results will require a self-consistent treatment including hydrogen dissocation and ionization, the results show the correct qualitative behavior and can be understood semi-analytically. The shock is found to be isothermal and supercritical for a range of conditions relevant to core accretion (CA), with Mach numbers greater than ca. 3. Across the shock, the entropy decreases significantly, by a few entropy units (k_B/baryon). While nearly 100 percent of the incoming kinetic energy is converted to radiation locally, the efficiencies are found to be as low as roughly 40 percent, implying that a meaningful fraction of the total accretion energy is brought into the planet. For realistic parameter combinations in the CA scenario, a non-zero fraction of the luminosity always escapes the system. This luminosity could explain, at least in part, recent observations in the LkCa 15 and HD 100546 systems.

تحميل البحث