ﻻ يوجد ملخص باللغة العربية
Coalescing random walk on a unimodular random rooted graph for which the root has finite expected degree visits each site infinitely often almost surely. A corollary is that an opinion in the voter model on such graphs has infinite expected lifetime. Additionally, we deduce an adaptation of our main theorem that holds uniformly for coalescing random walk on finite random unimodular graphs with degree distribution stochastically dominated by a probability measure with finite mean.
Begin continuous time random walks from every vertex of a graph and have particles coalesce when they collide. We use a duality relation with the voter model to prove the process is site recurrent on bounded degree graphs, and for Galton-Watson trees
We consider the random walk attachment graph introduced by Saram{a}ki and Kaski and proposed as a mechanism to explain how behaviour similar to preferential attachment may appear requiring only local knowledge. We show that if the length of the rando
We prove new results on lazy random walks on finite graphs. To start, we obtain new estimates on return probabilities $P^t(x,x)$ and the maximum expected hitting time $t_{rm hit}$, both in terms of the relaxation time. We also prove a discrete-time v
We study the evolution of a random walker on a conservative dynamic random environment composed of independent particles performing simple symmetric random walks, generalizing results of [16] to higher dimensions and more general transition kernels w
We consider a random walker in a dynamic random environment given by a system of independent simple symmetric random walks. We obtain ballisticity results under two types of perturbations: low particle density, and strong local drift on particles. Su