ﻻ يوجد ملخص باللغة العربية
In this contribution I will review some of the researches that are currently being pursued in Padova (mainly within the In:Theory and Strength projects), focusing on the interdisciplinary applications of nuclear theory to several other branches of physics, with the aim of contributing to show the centrality of nuclear theory in the Italian scientific scenario and the prominence of this fertile field in fostering new physics. In particular, I will talk about: i) the recent solution of the long-standing electron screening puzzle that settles a fundamental controversy in nuclear astrophysics between the outcome of lab experiments on earth and nuclear reactions happening in stars; the application of algebraic methods to very diverse systems such as: ii) the supramolecular complex H2@C60, i.e. a diatomic hydrogen molecule caged in a fullerene and iii) to the spectrum of hypernuclei, i.e. systems made of a Lambda particles trapped in (heavy) nuclei.
The large values of the singlet and triplet scattering lengths locate the two-nucleon system close to the unitary limit, the limit in which these two values diverge. As a consequence, the system shows a continuous scale invariance which strongly cons
We provide a brief commentary on recent work by Hammer and Son on the scaling behavior of nuclear reactions involving the emission of several loosely bound neutrons. In this work they discover a regime, termed unnuclear physics, in which these reacti
Auxiliary Field Diffusion Monte Carlo (AFDMC) calculations have been employed to revise the interaction between $Lambda$-hyperons and nucleons in hypernuclei. The scheme used to describe the interaction, inspired by the phenomenological Argonne-Urban
Physical systems characterized by a shallow two-body bound or virtual state are governed at large distances by a continuous-scale invariance, which is broken to a discrete one when three or more particles come into play. This symmetry induces a unive
The quark-model baryon-baryon interaction fss2, proposed by the Kyoto-Niigata group, is a unified model for the complete baryon octet (B_8=N, Lambda, Sigma and Xi), which is formulated in a framework of the (3q)-(3q) resonating-group method (RGM) usi