ترغب بنشر مسار تعليمي؟ اضغط هنا

A Long Look At MCG-5-23-16 With NuSTAR: I- Relativistic Reflection And Coronal Properties

64   0   0.0 ( 0 )
 نشر من قبل Abderahmen Zoghbi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

MCG-5-23-16 was targeted in early 2015 with a half mega-seconds observing campaign using NuSTAR. Here we present the spectral analysis of these datasets along with an earlier observation and study the relativistic reflection and the primary coronal source. The data show strong reflection features in the form of both narrow and broad iron lines plus a Compton reflection hump. A cutoff energy is significantly detected in all exposures. The shape of the reflection spectrum does not change in the two years spanned by the observations, suggesting a stable geometry. A strong positive correlation is found between the cutoff energy and both the hard X-ray flux and spectral index. The measurements imply that the coronal plasma is not at the runaway electron-positron pair limit, and instead contains mostly electrons. The observed variability in the coronal properties is driven by a variable optical depth. A constant heating to cooling ratio is measured implying that there is a feedback mechanism in which a significant fraction of the photons cooling the corona are due to reprocessed hard X-rays.



قيم البحث

اقرأ أيضاً

X-ray reverberation mapping has emerged as a new tool to probe accretion in AGN, providing a potentially powerful probe of accretion at the black hole scale. The lags, along with relativistic spectral signatures are often interpreted in light of the lamp-post model. Focusing specifically on testing the prediction of the relativistic reverberation model, we have targeted several of the brightest Seyfert Galaxies in X-rays with different observing programs. Here, we report the results from two large campaigns with NuSATR targeting MCG-5-23-16 and SWIFT J2127.4+5654 to test the model predictions in the 3-50 keV band. These are two of three sources that showed indications of a delayed Compton hump in early data. With triple the previously analyzed exposures, we find no evidence for relativistic reverberation in MCG-5-23-16, and the energy-dependent lags are consistent with a log-linear continuum. In SWIFT J2127.4+5654, although a continuum-only model explains the data, the relativistic reverberation model provides a significant improvement to the energy and frequency-dependent lags, but with parameters that are not consistent with the time-averaged spectrum. This adds to mounting evidence showing that the lag data is not consistent with a static lamp-post model.
We present the results of the simultaneous deep XMM and Chandra observations of the bright Seyfert 1.9 galaxy MCG-5-23-16, which is thought to have one of the best known examples of a relativistically broadened iron K-alpha line. The time averaged sp ectral analysis shows that the iron K-shell complex is best modeled with an unresolved narrow emission component (FWHM < 5000 km/s, EW ~ 60 eV) plus a broad component. This latter component has FWHM ~ 44000 km/s and EW ~ 50 eV. Its profile is well described by an emission line originating from an accretion disk viewed with an inclination angle ~ 40^circ and with the emission arising from within a few tens of gravitational radii of the central black hole. The time-resolved spectral analysis of the XMM EPIC-pn spectrum shows that both the narrow and broad components of the Fe K emission line appear to be constant in time within the errors. We detected a narrow sporadic absorption line at 7.7 keV which appears to be variable on a time-scale of 20 ksec. If associated with Fe XXVI Ly-alpha this absorption is indicative of a possibly variable, high ionization, high velocity outflow. The variability of this absorption feature appears to rule out a local (z=0) origin. The analysis of the XMM RGS spectrum reveals that the soft X-ray emission of MCG-5-23-16 is likely dominated by several emission lines superimposed on an unabsorbed scattered power-law continuum. The lack of strong Fe L shell emission together with the detection of a strong forbidden line in the O VII triplet is consistent with a scenario where the soft X-ray emission lines are produced in a plasma photoionized by the nuclear emission.
71 - James N. Reeves 2006
We report on a 100 ks Suzaku observation of the bright, nearby (z=0.008486) Seyfert 1.9 galaxy MCG -5-23-16. The broad-band (0.4-100 keV) X-ray spectrum allows us to determine the nature of the high energy emission with little ambiguity. The X-ray co ntinuum consists of a cutoff power-law of photon index $Gamma=1.9$, absorbed through Compton-thin matter of column density $N_{rm H}=1.6times10^{22}$ cm$^{-2}$. A soft excess is observed below 1 keV and is likely a combination of emission from scattered continuum photons and distant photoionized gas. The iron K line profile is complex, showing narrow neutral iron K$alpha$ and K$beta$ emission, as well as a broad line which can be modeled by a moderately inclined accretion disk. The line profile shows either the disk is truncated at a few tens of gravitational radii, or the disk emissivity profile is relatively flat. A strong Compton reflection component is detected above 10 keV, which is best modeled by a combination of reflection off distant matter and the accretion disk. The reflection component does not appear to vary. The overall picture is that this Seyfert 1.9 galaxy is viewed at moderate (50 degrees) inclination through Compton-thin matter at the edge of a Compton-thick torus covering $2pi$ steradians, consistent with unified models.
198 - L.W. Brenneman 2013
We present an analysis of a ~160 ks NuSTAR observation of the nearby bright Seyfert galaxy IC4329A. The high-quality broadband spectrum enables us to separate the effects of distant reflection from the direct coronal continuum, and to therefore accur ately measure the high-energy cutoff to be $E_{cut}=178^{+74}_{-40}$ keV. The coronal emission arises from accretion disk photons Compton up-scattered by a thermal plasma, with the spectral index and cutoff being due to a combination of the finite plasma temperature and optical depth. Applying standard Comptonization models, we measure both physical properties independently using the best signal-to-noise obtained to date in an AGN over the 3-79 keV band. We derive $kT_e=37^{+7}_{-6}$ keV with $tau=1.25^{+0.20}_{-0.10}$ assuming a slab geometry for the plasma, and $kT_e=33^{+6}_{-6}$ keV with $tau=3.41^{+0.58}_{-0.38}$ for a spherical geometry, with both having an equivalent goodness-of-fit.
We analyze seven NICER and NuSTAR epochs of the black hole X-ray binary GX 339-4 in the hard state during its two most recent hard-only outbursts in 2017 and 2019. These observations cover the 1-100 keV unabsorbed luminosities between 0.3% and 2.1% o f the Eddington limit. With NICERs negligible pile-up, high count rate and unprecedented time resolution, we perform a spectral-timing analysis and spectral modeling using relativistic and distant reflection models. Our spectral fitting shows that as the inner disk radius moves inwards, the thermal disk emission increases in flux and temperature, the disk becomes more highly ionized and the reflection fraction increases. This coincides with the inner disk increasing its radiative efficiency around ~1% Eddington. We see a hint of hysteresis effect at ~0.3% of Eddington: the inner radius is significantly truncated during the rise ($>49R_{g}$), while only a mild truncation ($sim5R_g$) is found during the decay. At higher frequencies ($2-7$~Hz) in the highest luminosity epoch, a soft lag is present, whose energy dependence reveals a thermal reverberation lag, with an amplitude similar to previous findings for this source. We also discuss the plausibility of the hysteresis effect and the debate of the disk truncation problem in the hard state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا