ﻻ يوجد ملخص باللغة العربية
We report Chandra X-ray observations and optical weak-lensing measurements from Subaru/Suprime-Cam images of the double galaxy cluster Abell 2465 (z=0.245). The X-ray brightness data are fit to a beta-model to obtain the radial gas density profiles of the northeast (NE) and southwest (SW) sub-components, which are seen to differ in structure. We determine core radii, central temperatures, the gas masses within $r_{500c}$, and the total masses for the broader NE and sharper SW components assuming hydrostatic equilibrium. The central entropy of the NE clump is about two times higher than the SW. Along with its structural properties, this suggests that it has undergone merging on its own. The weak-lensing analysis gives virial masses for each substructure, which compare well with earlier dynamical results. The derived outer mass contours of the SW sub-component from weak lensing are more irregular and extended than those of the NE. Although there is a weak enhancement and small offsets between X-ray gas and mass centers from weak lensing, the lack of large amounts of gas between the two sub-clusters indicates that Abell 2465 is in a pre-merger state. A dynamical model that is consistent with the observed cluster data, based on the FLASH program and the radial infall model, is constructed, where the subclusters currently separated by ~1.2Mpc are approaching each other at ~2000km/s and will meet in ~0.4Gyr.
We investigate the star formation rate and its location in the major merger cluster Abell 2465 at $z$ = 0.245. Optical properties of the cluster are described in Paper I. Measurements of the H$alpha$ and infrared dust emission of galaxies in the clus
We present Suzaku observations of the galaxy cluster Abell 2029, which exploit Suzakus low particle background to probe the ICM to radii beyond those possible with previous observations (reaching out to the virial radius), and with better azimuthal c
Weak gravitational lensing of background galaxies provides a direct probe of the projected matter distribution in and around galaxy clusters. Here we present a self-contained pedagogical review of cluster--galaxy weak lensing, covering a range of top
Scaling properties of galaxy cluster observables with mass provide central insights into the processes shaping clusters. Calibrating proxies for cluster mass will be crucial to cluster cosmology with upcoming surveys like eROSITA and Euclid. The rece
Determination of cluster masses is a fundamental tool for cosmology. Comparing mass estimates obtained by different probes allows to understand possible systematic uncertainties. The cluster Abell 315 is an interesting test case, since it has been cl