ترغب بنشر مسار تعليمي؟ اضغط هنا

Selection bias in dynamically-measured super-massive black hole samples: dynamical masses and dependence on Sersic index

64   0   0.0 ( 0 )
 نشر من قبل Francesco Shankar Dr.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We extend the comparison between the set of local galaxies having dynamically measured black holes with galaxies in the Sloan Digital Sky Survey (SDSS). We first show that the most up-to-date local black hole samples of early-type galaxies with measurements of effective radii, luminosities, and Sersic indices of the bulges of their host galaxies, have dynamical mass and Sersic index distributions consistent with those of SDSS early-type galaxies of similar bulge stellar mass. The host galaxies of local black hole samples thus do not appear structurally different from SDSS galaxies, sharing similar dynamical masses, light profiles and light distributions. Analysis of the residuals reveals that velocity dispersion is more fundamental than Sersic index n in the scaling relations between black holes and galaxies. Indeed, residuals with Sersic index could be ascribed to the (weak) correlation with bulge mass or even velocity dispersion. Finally, targetted Monte Carlo simulations that include the effects of the sphere of influence of the black hole, and tuned to reproduce the observed residuals and scaling relations in terms of velocity dispersion and stellar mass, show that, at least for galaxies with Mbulge > 1e10 Msun and n>5, the observed mean black hole mass at fixed Sersic index is biased significantly higher than the intrinsic value.



قيم البحث

اقرأ أيضاً

Supermassive black hole -- host galaxy relations are key to the computation of the expected gravitational wave background (GWB) in the pulsar timing array (PTA) frequency band. It has been recently pointed out that standard relations adopted in GWB c omputations are in fact biased-high. We show that when this selection bias is taken into account, the expected GWB in the PTA band is a factor of about three smaller than previously estimated. Compared to other scaling relations recently published in the literature, the median amplitude of the signal at $f=1$yr$^{-1}$ drops from $1.3times10^{-15}$ to $4times10^{-16}$. Although this solves any potential tension between theoretical predictions and recent PTA limits without invoking other dynamical effects (such as stalling, eccentricity or strong coupling with the galactic environment), it also makes the GWB detection more challenging.
We compare the set of local galaxies having dynamically measured black holes with a large, unbiased sample of galaxies extracted from the Sloan Digital Sky Survey. We confirm earlier work showing that the majority of black hole hosts have significant ly higher velocity dispersions sigma than local galaxies of similar stellar mass. We use Monte-Carlo simulations to illustrate the effect on black hole scaling relations if this bias arises from the requirement that the black hole sphere of influence must be resolved to measure black hole masses with spatially resolved kinematics. We find that this selection effect artificially increases the normalization of the Mbh-sigma relation by a factor of at least ~3; the bias for the Mbh-Mstar relation is even larger. Our Monte Carlo simulations and analysis of the residuals from scaling relations both indicate that sigma is more fundamental than Mstar or effective radius. In particular, the Mbh-Mstar relation is mostly a consequence of the Mbh-sigma and sigma-Mstar relations, and is heavily biased by up to a factor of 50 at small masses. This helps resolve the discrepancy between dynamically-based black hole-galaxy scaling relations versus those of active galaxies. Our simulations also disfavour broad distributions of black hole masses at fixed sigma. Correcting for this bias suggests that the calibration factor used to estimate black hole masses in active galaxies should be reduced to values of fvir~1. Black hole mass densities should also be proportionally smaller, perhaps implying significantly higher radiative efficiencies/black hole spins. Reducing black hole masses also reduces the gravitational wave signal expected from black hole mergers.
Recent work has confirmed that the masses of supermassive black holes, estimated from scaling relations with global properties such as the stellar masses of their host galaxies, may be biased high. Much of this may be caused by the requirement that t he gravitational sphere of influence of the black hole must be resolved for the black-hole mass to be reliably estimated. We revisit this issue by using a comprehensive galaxy evolution semi-analytic model, which self-consistently evolves supermassive black holes from high-redshift seeds via gas accretion and mergers, and also includes AGN feedback. Once tuned to reproduce the (mean) correlation of black-hole mass with velocity dispersion, the model is unable to also account for the correlation with stellar mass. This behaviour is independent of the models parameters, thus suggesting an internal inconsistency in the data. The predicted distributions, especially at the low-mass end, are also much broader than observed. However, if selection effects are included, the models predictions tend to align with the observations. We also demonstrate that the correlations between the residuals of the local scaling relations are more effective than the scaling relations themselves at constraining AGN feedback models. In fact, we find that our semi-analytic model, while in apparent broad agreement with the scaling relations when accounting for selection biases, yields very weak correlations between their residuals at fixed stellar mass, in stark contrast with observations. This problem persists when changing the AGN feedback strength, and is also present in the $zsim 0$ outputs of the hydrodynamic cosmological simulation Horizon-AGN, which includes state-of-the-art treatments of AGN feedback. This suggests that current AGN feedback models may be too weak or are simply not capturing the effect of the black hole on the stellar velocity dispersion.
We present the discovery and first three months of follow-up observations of a currently on-going unusual transient detected by the OGLE-IV survey, located in the centre of a galaxy at redshift z=0.1655. The long rise to absolute magnitude of -20.5 m ag, slow decline, very broad He and H spectral features make OGLE16aaa similar to other optical/UV Tidal Disruption Events (TDEs). Weak narrow emission lines in the spectrum and archival photometric observations suggest the host galaxy is a weak-line Active Galactic Nucleus (AGN), which has been accreting at higher rate in the past. OGLE16aaa, along with SDSS J0748, seems to form a sub-class of TDEs by weakly or recently active super-massive black holes (SMBHs). This class might bridge the TDEs by quiescent SMBHs and flares observed as changing-look QSOs, if we interpret the latter as TDEs. If this picture is true, the previously applied requirement for identifying a flare as a TDE that it had to come from an inactive nucleus, could be leading to observational bias in TDE selection, thus affecting TDE-rate estimations.
We investigate the abundance of Super-Massive Black Hole (SMBH) seeds in primordial galaxy halos. We explore the assumption that dark matter halos outgrowing a critical halo mass M_c have some probability p of having spawned a SMBH seed. Current obse rvations of local, intermediate-mass galaxies constrain these parameters: For $M_c=10^{11}M_odot$, all halos must be seeded, but when adopting smaller M_c masses the seeding can be much less efficient. The constraints also put lower limits on the number density of black holes in the local and high-redshift Universe. Reproducing z~6 quasar space densities depends on their typical halo mass, which can be constrained by counting nearby Lyman Break Galaxies and Lyman Alpha Emitters. For both observables, our simulations demonstrate that single-field predictions are too diverse to make definitive statements, in agreement with mixed claims in the literature. If quasars are not limited to the most massive host halos, they may represent a tiny fraction (~10^-5) of the SMBH population. Finally, we produce a wide range of predictions for gravitational events from SMBH mergers. We define a new diagnostic diagram for LISA to measure both SMBH space density and the typical delay between halo merger and black hole merger. While previous works have explored specific scenarios, our results hold independent of the seed mechanism, seed mass, obscuration, fueling methods and duty cycle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا