Kinetic temperature of massive star forming molecular clumps measured with formaldehyde. II. The Large Magellanic Cloud


الملخص بالإنكليزية

The Large Magellanic Cloud (LMC), the closest star forming galaxy with low metallicity, provides an ideal laboratory to study star formation in such an environment. The classical dense molecular gas thermometer NH3 is rarely available in a low metallicity environment because of photoionization and a lack of nitrogen atoms. Our goal is to directly measure the gas kinetic temperature with formaldehyde toward six star-forming regions in the LMC. Three rotational transitions of para-H2CO near 218 GHz were observed with the APEX 12m telescope toward six star forming regions in the LMC. Those data are complemented by C18O 2-1 spectra. Using non-LTE modeling with RADEX, we derive the gas kinetic temperature and spatial density, using as constraints the measured para-H2CO 321-220/303-202 and para-H2CO 303-202/C18O 2-1 ratios. Excluding the quiescent cloud N159S, where only one para-H2CO line could be detected, the gas kinetic temperatures derived from the preferred para-H2CO 321-220/303-202 line ratios range from 35 to 63 K with an average of 47 K. Spatial densities of the gas derived from the paraH2CO 303-202/C18O 2-1 line ratios yield 0.4-2.9x10^5 cm^-3 with an average of 1.5x10^5 cm^-3. Temperatures derived from the para-H2CO line ratio are similar to those obtained with the same method from Galactic star forming regions and agree with results derived from CO in the dense regions of the LMC. A comparison of kinetic temperatures derived from para-H2CO with those from the dust also shows good agreement. This suggests that the dust and para-H2CO are well mixed in the studied star forming regions. A correlation between the gas kinetic temperatures derived from para-H2CO and infrared luminosity, represented by the 250um flux, suggests that the kinetic temperatures traced by para-H2CO are correlated with the ongoing massive star formation in the LMC.

تحميل البحث