ﻻ يوجد ملخص باللغة العربية
We theoretically demonstrate that the chiral structure of the nodes of nodal semimetals is responsible for the existence and universal local properties of the edge states in the vicinity of the nodes. We perform a general analysis of the edge states for an isolated node of a 2D semimetal, protected by {em chiral symmetry} and characterized by the topological winding number $N$. We derive the asymptotic chiral-symmetric boundary conditions and find that there are $N+1$ universal classes of them. The class determines the numbers of flat-band edge states on either side off the node in the 1D spectrum and the winding number $N$ gives the {em total} number of edge states. We then show that the edge states of chiral nodal semimetals are {em robust}: they persist in a finite-size {em stability region} of parameters of chiral-asymmetric terms. This significantly extends the notion of 2D and 3D topological nodal semimetals. We demonstrate that the Luttinger model with a quadratic node for $j=frac32$ electrons is a 3D topological semimetal in this new sense and predict that $alpha$-Sn, HgTe, possibly Pr$_2$Ir$_2$O$_7$, and many other semimetals described by it are topological and exhibit surface states.
We experimentally investigate the magnetic field dependence of Andreev transport through a region of proximity-induced superconductivity in CoSi topological chiral semimetal. With increasing parallel to the CoSi surface magnetic field, the sharp subg
Riemann surfaces are geometric constructions in complex analysis that may represent multi-valued holomorphic functions using multiple sheets of the complex plane. We show that the energy dispersion of surface states in topological semimetals can be r
The edge states of a two-dimensional quantum spin Hall (QSH) insulator form a one-dimensional helical metal which is responsible for the transport property of the QSH insulator. Conceptually, such a one-dimensional helical metal can be attached to an
We study the topologically non-trivial semi-metals by means of the 6-band Kane model. Existence of surface states is explicitly demonstrated by calculating the LDOS on the material surface. In the strain free condition, surface states are divided int
Epitaxial thin films of CuMnAs have recently attracted attention due to their potential to host relativistic antiferromagnetic spintronics and exotic topological physics. Here we report on the structural and electronic properties of a tetragonal CuMn