ﻻ يوجد ملخص باللغة العربية
We propose, for the first time, a valley Seebeck effect in gate tunable zigzag graphene nanoribbons as a result of the interplay between thermal gradient and valleytronics. A pure valley current is further generated by the thermal gradient as well as the external bias. In a broad temperature range, the pure valley current is found to be linearly dependent on the temperature gradient while it increases with the increasing temperature of one lead for a fixed thermal gradient. A valley field effect transistor (FET) driven by the temperature gradient is proposed that can turn on and off the pure valley current by gate voltage. The threshold gate voltage and on valley current are proportional to the temperature gradient. When the system switches on at positive gate voltage, the pure valley current is nearly independent of gate voltage. The valley transconductance is up to 30 {mu}S if we take Ampere as the unit of the valley current. This valley FET may find potential application in future valleytronics and valley caloritronics.
Valley pseudospin, the quantum degree of freedom characterizing the degenerate valleys in energy bands, is a distinct feature of two-dimensional Dirac materials. Similar to spin, the valley pseudospin is spanned by a time reversal pair of states, tho
We demonstrate a flip-chip device for performing low-temperature acoustoelectric measurements on exfoliated two-dimensional materials. With this device, we study gate-tunable acoustoelectric transport in an exfoliated monolayer graphene device, measu
Graphene nanoribbons with zigzag terminated edges have a magnetic ground state characterized by edge ferromagnetism and antiferromagnetic inter edge coupling. This broken symmetry state is degenerate in the spin orientation and we show that, associat
In this article, we report band structure studies of zigzag graphene nanoribbons (ZGNRs) on introducing defects (sp_3 hybridized carbon atoms) in different concentrations at edges by varying the ratio of sp_3 to sp_2 hybridized carbon atoms. On the b
We present an analytical tight-binding theory of the optical properties of graphene nanoribbons with zigzag edges. Applying the transfer matrix technique to the nearest-neighbor tight-binding Hamiltonian, we derive analytical expressions for electron