ﻻ يوجد ملخص باللغة العربية
We report on the excitation and detection of short-waved spin waves with wave vectors up to about $40,mathrm{rad},mumathrm{m}^{-1}$ in spin-wave waveguides made from ultrathin, in-plane magnetized Co$_{8}$Fe$_{72}$B$_{20}$ (CoFeB). The CoFeB is incorporated in a layer stack of Ta/CoFeB/Mgo, a layer system featuring large spin orbit torques and a large perpendicular magnetic anisotropy constant. The short-waved spin waves are excited by nanometric coplanar waveguides and are detected via spin rectification and microfocussed Brillouin light scattering spectroscopy. We show that the large perpendicular magnetic anisotropy benefits the spin-wave lifetime greatly, resulting in a lifetime comparable to bulk systems without interfacial damping. The presented results pave the way for the successful extension of magnonics to ultrathin asymmetric layer stacks featuring large spin orbit torques.
Spin current generated by spin Hall effect in the heavy metal would diffuse up and down to adjacent ferromagnetic layers and exert torque on their magnetization, called spin-orbit torque. Antiferromagnetically coupled trilayers, namely the so-called
We present a comprehensive study of the current-induced spin-orbit torques in perpendicularly magnetized Ta/CoFeB/MgO layers. The samples were annealed in steps up to 300 degrees C and characterized using x-ray absorption spectroscopy, transmission e
We investigate the spin Hall effect in perpendicularly magnetized Ta/Co40Fe40B20/MgO trilayers with Ta underlayers thicker than the spin diffusion length. The crystallographic structures of the Ta layer and Ta/CoFeB interface are examined in detail u
Voltage control of magnetism and spintronics have been highly desirable, but rarely realized. In this work, we show voltage-controlled spin-orbit torque (SOT) switching in W/CoFeB/MgO films with perpendicular magnetic anisotropy (PMA) with voltage ad
Spin-orbit torque facilitates efficient magnetization switching via an in-plane current in perpendicularly magnetized heavy metal/ferromagnet heterostructures. The efficiency of spin-orbit-torque-induced switching is determined by the charge-to-spin