ترغب بنشر مسار تعليمي؟ اضغط هنا

Long-Period Intensity Pulsations in Coronal Loops Explained by Thermal Non-Equilibrium Cycles

90   0   0.0 ( 0 )
 نشر من قبل Clara Froment
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In solar coronal loops, thermal non-equilibrium (TNE) is a phenomenon that can occur when the heating is both highly-stratified and quasi-constant. Unambiguous observational identification of TNE would thus permit to strongly constrain heating scenarios. Up to now, while TNE is the standard interpretation of coronal rain, the long-term periodic evolution predicted by simulations has never been observed yet. However, the detection of long-period intensity pulsations (periods of several hours) has been recently reported with SoHO/EIT, and this phenomenon appears to be very common in loops. Moreover, the three intensity-pulsation events that we recently studied with SDO/AIA show strong evidence for TNE in warm loops. In the present paper, a realistic loop geometry from LFFF extrapolations is used as input to 1D hydrodynamic simulations. Our simulations show that for the present loop geometry, the heating has to be asymmetrical to produce TNE. We analyse in detail one particular simulation that reproduces the average thermal behavior of one of the pulsating loop bundle observed with AIA. We compare the properties of this simulation with the properties deduced from the observations. The magnetic topology of the LFFF extrapolations points to the presence of sites of preferred reconnection at one footpoint, supporting the presence of asymmetric heating. In addition, we can reproduce the temporal large-scale intensity properties of the pulsating loops. This simulation further strengthens the interpretation of the observed pulsations as signatures of TNE. This thus gives important information on the heating localization and time scale for these loops.



قيم البحث

اقرأ أيضاً

Thermal non-equilibrium (TNE) is a phenomenon that can occur in solar coronal loops when the heating is quasi-constant and highly-stratified. Under such heating conditions, coronal loops undergo cycles of evaporation and condensation. The recent obse rvations of ubiquitous long-period intensity pulsations in coronal loops and their relationship with coronal rain have demonstrated that understanding the characteristics of TNE cycles is an essential step in constraining the circulation of mass and energy in the corona. We report unique observations with the Solar Dynamics Observatory (SDO) and the Swedish 1-m Solar Telescope (SST) that link the captured thermal properties across the extreme spatiotemporal scales covered by TNE processes. Within the same coronal loop bundle, we captured 6 hr period coronal intensity pulsations in SDO/AIA and coronal rain observed off-limb in the chromospheric Halpha and Ca II K spectral lines with SST/CRISP and SST/CHROMIS. We combined a multi-thermal analysis of the cycles with AIA and an extensive spectral characterisation of the rain clumps with the SST. We find clear evidence of evaporation-condensation cycles in the corona which are linked with periodic coronal rain showers. The high-resolution spectroscopic instruments at the SST reveal the fine-structured rain strands and allow us to probe the cooling phase of one of the cycles down to chromospheric temperatures. These observations reinforce the link between long-period intensity pulsations and coronal rain. They also demonstrate the capability of TNE to shape the dynamics of active regions on the large scales as well as on the smallest scales currently resolvable.
Long-period EUV pulsations, recently discovered to be common in active regions, are understood to be the coronal manifestation of thermal non-equilibrium (TNE). The active regions previously studied with EIT/SOHO and AIA/SDO indicated that long-perio d intensity pulsations are localized in only one or two loop bundles. The basic idea of this study is to understand why. For this purpose, we tested the response of different loop systems, using different magnetic configurations, to different stratifications and strengths of the heating. We present an extensive parameter-space study using 1D hydrodynamic simulations (1,020 in total) and conclude that the occurrence of TNE requires specific combinations of parameters. Our study shows that the TNE cycles are confined to specific ranges in parameter space. This naturally explains why only some loops undergo constant periodic pulsations over several days: since the loop geometry and the heating properties generally vary from one loop to another in an active region, only the ones in which these parameters are compatible exhibits TNE cycles. Furthermore, these parameters (heating and geometry) are likely to vary significantly over the duration of a cycle, which potentially limits the possibilities of periodic behavior. This study also confirms that long-period intensity pulsations and coronal rain are two aspects of the same phenomenon: both phenomena can occur for similar heating conditions and can appear simultaneously in the simulations.
153 - Paola Testa 2014
The physical processes causing energy exchange between the Suns hot corona and its cool lower atmosphere remain poorly understood. The chromosphere and transition region (TR) form an interface region between the surface and the corona that is highly sensitive to the coronal heating mechanism. High resolution observations with the Interface Region Imaging Spectrograph (IRIS) reveal rapid variability (about 20 to 60 seconds) of intensity and velocity on small spatial scales at the footpoints of hot dynamic coronal loops. The observations are consistent with numerical simulations of heating by beams of non-thermal electrons, which are generated in small impulsive heating events called coronal nanoflares. The accelerated electrons deposit a sizable fraction of their energy in the chromosphere and TR. Our analysis provides tight constraints on the properties of such electron beams and new diagnostics for their presence in the nonflaring corona.
Any successful model of coronal loops must explain a number of observed properties. For warm (~ 1 MK) loops, these include: 1. excess density, 2. flat temperature profile, 3. super-hydrostatic scale height, 4. unstructured intensity profile, and 5. 1 000--5000 s lifetime. We examine whether thermal nonequilibrium can reproduce the observations by performing hydrodynamic simulations based on steady coronal heating that decreases exponentially with height. We consider both monolithic and multi-stranded loops. The simulations successfully reproduce certain aspects of the observations, including the excess density, but each of them fails in at least one critical way. Monolithic models have far too much intensity structure, while multi-strand models are either too structured or too long-lived. Our results appear to rule out the widespread existence of heating that is both highly concentrated low in the corona and steady or quasi-steady (slowly varying or impulsive with a rapid cadence). Active regions would have a very different appearance if the dominant heating mechanism had these properties. Thermal nonequilibrium may nonetheless play an important role in prominences and catastrophic cooling events (e.g., coronal rain) that occupy a small fraction of the coronal volume. However, apparent inconsistencies between the models and observations of cooling events have yet to be understood.
Quasi-constant heating at the footpoints of loops leads to evaporation and condensation cycles of the plasma: thermal non-equilibrium (TNE). This phenomenon is believed to play a role in the formation of prominences and coronal rain. However, it is o ften discarded to be involved in the heating of warm loops as the models do not reproduce observations. Recent simulations have shown that these inconsistencies with observations may be due to oversimplifications of the geometries of the models. In addition, our recent observations reveal that long-period intensity pulsations (several hours) are common in solar coronal loops. These periods are consistent with those expected from TNE. The aim of this paper is to derive characteristic physical properties of the plasma for some of these events to test the potential role of TNE in loop heating. We analyzed three events in detail using the six EUV coronal channels of SDO/AIA. We performed both a Differential Emission Measure (DEM) and a time-lag analysis, including a new method to isolate the relevant signal from the foreground and background emission. For the three events, the DEM undergoes long-period pulsations, which is a signature of periodic heating even though the loops are captured in their cooling phase, as is the bulk of the active regions. We link long-period intensity pulsations to new signatures of loop heating with strong evidence for evaporation and condensation cycles. We thus witness simultaneously widespread cooling and TNE. Finally, we discuss the implications of our new observations for both static and impulsive heating models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا