ترغب بنشر مسار تعليمي؟ اضغط هنا

The heat trace for the drifting Laplacian and Schrodinger operators on manifolds

199   0   0.0 ( 0 )
 نشر من قبل Nelia Charalambous
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the heat trace for both the drifting Laplacian as well as Schrodinger operators on compact Riemannian manifolds. In the case of a finite regularity potential or weight function, we prove the existence of a partial (six term) asymptotic expansion of the heat trace for small times as well as a suitable remainder estimate. We also demonstrate that the more precise asymptotic behavior of the remainder is determined by and conversely distinguishes higher (Sobolev) regularity on the potential or weight function. In the case of a smooth weight function, we determine the full asymptotic expansion of the heat trace for the drifting Laplacian for small times. We then use the heat trace to study the asymptotics of the eigenvalue counting function. In both cases the Weyl law coincides with the Weyl law for the Riemannian manifold with the standard Laplace-Beltrami operator. We conclude by demonstrating isospectrality results for the drifting Laplacian on compact manifolds.



قيم البحث

اقرأ أيضاً

The lowest eigenvalue of the Schrodinger operator $-Delta+mathcal{V}$ on a compact Riemannian manifold without boundary is studied. We focus on the particularly subtle case of a sign changing potential with positive average.
We study several trace operators and spaces that are related to the bi-Laplacian. They are motivated by the development of ultraweak formulations for the bi-Laplace equation with homogeneous Dirichlet condition, but are also relevant to describe conf ormity of mixed approximations. Our aim is to have well-posed (ultraweak) formulations that assume low regularity, under the condition of an $L_2$ right-hand side function. We pursue two ways of defining traces and corresponding integration-by-parts formulas. In one case one obtains a non-closed space. This can be fixed by switching to the Kirchhoff-Love traces from [Fuhrer, Heuer, Niemi, An ultraweak formulation of the Kirchhoff-Love plate bending model and DPG approximation, Math. Comp., 88 (2019)]. Using different combinations of trace operators we obtain two well-posed formulations. For both of them we report on numerical experiments with the DPG method and optimal test functions. In this paper we consider two and three space dimensions. However, with the exception of a given counterexample in an appendix (related to the non-closedness of a trace space), our analysis applies to any space dimension larger than or equal to two.
66 - Casey Blacker , Shoo Seto 2018
We prove a Lichnerowicz type lower bound for the first nontrivial eigenvalue of the $p$-Laplacian on Kahler manifolds. Parallel to the $p = 2$ case, the first eigenvalue lower bound is improved by using a decomposition of the Hessian on Kahler manifolds with positive Ricci curvature.
77 - Matthias Ludewig 2017
Let $L_g$ be the subcritical GJMS operator on an even-dimensional compact manifold $(X, g)$ and consider the zeta-regularized trace $mathrm{Tr}_zeta(L_g^{-1})$ of its inverse. We show that if $ker L_g = 0$, then the supremum of this quantity, taken o ver all metrics $g$ of fixed volume in the conformal class, is always greater than or equal to the corresponding quantity on the standard sphere. Moreover, we show that in the case that it is strictly larger, the supremum is attained by a metric of constant mass. Using positive mass theorems, we give some geometric conditions for this to happen.
165 - Xiaonan Ma 2008
We study the Berezin-Toeplitz quantization on symplectic manifolds making use of the full off-diagonal asymptotic expansion of the Bergman kernel. We give also a characterization of Toeplitz operators in terms of their asymptotic expansion. The semi- classical limit properties of the Berezin-Toeplitz quantization for non-compact manifolds and orbifolds are also established.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا