ﻻ يوجد ملخص باللغة العربية
We continue the study of the gl(1|1) Wess-Zumino-Witten model. The Knizhnik-Zamolodchikov equations for the one, two, three and four point functions are analyzed, for vertex operators corresponding to typical and projective representations. We illustrate their interplay with the logarithmic global conformal Ward identities. We compute the four point function for one projective and three typical representations. Three coupled first order Knizhnik-Zamolodchikov equations are integrated consecutively in terms of generalized hypergeometric functions, and we assemble the solutions into a local correlator. Moreover, we prove crossing symmetry of the four point function of four typical representations at generic momenta. Throughout, the map between the gl(1|1) Wess-Zumino-Witten model and symplectic fermions is exploited and extended.
We revisit various topological issues concerning four-dimensional ungauged and gauged Wess-Zumino-Witten (WZW) terms for $SU$ and $SO$ quantum chromodynamics (QCD), from the modern bordism point of view. We explain, for example, why the definition of
Non-anticommutative deformations have been studied in the context of supersymmetry (SUSY) in three and four space-time dimensions, and the general picture is that highly nontrivial to deform supersymmetry in a way that still preserves some of its imp
We consider the problem of the decomposition of the Renyi entanglement entropies in theories with a non-abelian symmetry by doing a thorough analysis of Wess-Zumino-Witten (WZW) models. We first consider $SU(2)_k$ as a case study and then generalise
We shall give an axiomatic construction of Wess-Zumino-Witten actions valued in (G=SU(N)), (Ngeq 3). It is realized as a functor ({WZ}) from the category of conformally flat four-dimensional manifolds to the category of line bundles with connection t
The main purpose of the report is to provide some argumentation that three seemingly distinct approaches of 1. Giveon, Kutasov and Seiberg (hep-th/9806194); 2. Hemming, Keski-Vakkuri (hep-th/0110252); Maldacena, Ooguri (hep-th/0001053) and 3. I. Bars