ﻻ يوجد ملخص باللغة العربية
Inverse Compton scattering (ICS) is a unique mechanism for producing fast pulses - picosecond and below - of bright X- to gamma-rays. These nominally narrow spectral bandwidth electromagnetic radiation pulses are efficiently produced in the interaction between intense, well-focused electron and laser beams. The spectral characteristics of such sources are affected by many experimental parameters, such as the bandwidth of the laser, and the angles of both the electrons and laser photons at collision. The laser field amplitude induces harmonic generation and importantly, for the present work, nonlinear red shifting, both of which dilute the spectral brightness of the radiation. As the applications enabled by this source often depend sensitively on its spectra, it is critical to resolve the details of the wavelength and angular distribution obtained from ICS collisions. With this motivation, we present here an experimental study that greatly improves on previous spectral measurement methods based on X-ray K-edge filters, by implementing a multi-layer bent-crystal X-ray spectrometer. In tandem with a collimating slit, this method reveals a projection of the double-differential angular-wavelength spectrum of the ICS radiation in a single shot. The measurements enabled by this diagnostic illustrate the combined off-axis and nonlinear-field-induced red shifting in the ICS emission process. They reveal in detail the strength of the normalized laser vector potential, and provide a non-destructive measure of the temporal and spatial electron-laser beam overlap.
We study single, double and higher-order nonlinear Compton scattering where an electron interacts nonlinearly with a high-intensity laser and emits one, two or more photons. We study, in particular, how double Compton scattering is separated into one
We generate inverse Compton scattered X-rays in both linear and nonlinear regimes with a 250 MeV laser wakefield electron accelerator and plasma mirror by retro-reflecting the unused drive laser light to scatter from the accelerated electrons. We cha
Compton inverse radiation emitted due to backscattering of laser pulses off the relativistic electrons possesses high spectral density and high energy of photons - in hard x-ray up to gamma-ray energies - because of short wavelength of laser radiatio
In a free space, the Sunyaev-Zeldovich (SZ) effect is a small spectral distortion of the cosmic microwave background (CMB) spectrum caused by inverse Compton scattering of microwave background photons from energetic electrons in the plasma. However,
Impacts of spin-polarization of an ultrarelativistic electron beam head-on colliding with a strong laser pulse on emitted photon spectra and electron dynamics have been investigated in the quantum radiation regime. We simulate photon emissions quantu