ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiplicative structure on Real Johnson-Wilson theory

205   0   0.0 ( 0 )
 نشر من قبل Vitaly Lorman
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that the Real Johnson-Wilson theories ER(n) are homotopy associative and commutative ring spectra up to phantom maps. We further show that ER(n) represents an associatively and commutatively multiplicative cohomology theory on the category of (possibly non-compact) spaces.



قيم البحث

اقرأ أيضاً

We show that the Hopf elements, the Kervaire classes, and the $bar{kappa}$-family in the stable homotopy groups of spheres are detected by the Hurewicz map from the sphere spectrum to the $C_2$-fixed points of the Real Brown-Peterson spectrum. A subs et of these families is detected by the $C_2$-fixed points of Real Johnson-Wilson theory $Emathbb{R}(n)$, depending on $n$.
We offer a complete description of $THH(E(2))$ under the assumption that the Johnson-Wilson spectrum $E(2)$ at a chosen odd prime carries an $E_infty$-structure. We also place $THH(E(2))$ in a cofiber sequence $E(2) rightarrow THH(E(2))rightarrow ove rline{THH}(E(2))$ and describe $overline{THH}(E(2))$ under the assumption that $E(2)$ is an $E_3$-ring spectrum. We state general results about the $K(i)$-local behaviour of $THH(E(n))$ for all $n$ and $0 leq i leq n$. In particular, we compute $K(i)_*THH(E(n))$.
This is the first part in a series of papers establishing an equivariant analogue of Steve Wilsons theory of even spaces, including the fact that the spaces in the loop spectrum for complex cobordism are even.
We use Segal-Mitchisons cohomology of topological groups to define a convenient model for topological gerbes. We introduce multiplicative gerbes over topological groups in this setup and we define its representations. For a specific choice of represe ntation, we construct its category of endomorphisms and we show that it induces a new multiplicative gerbe over another topological group. This new induced group is fibrewise Pontrjagin dual to the original one and therefore we called the pair of multiplicative gerbes `Pontrjagin dual. We show that Pontrjagin dual multipliciative gerbes have equivalent categories of representations and moreover, we show that their monoidal centers are equivalent. Examples of Pontrjagin dual multiplicative gerbes over finite and discrete, as well as compact and non-compact Lie groups are provided.
We prove a multiplicative version of the equivariant Barratt-Priddy-Quillen theorem, starting from the additive version proven in arXiv:1207.3459. The proof uses a multiplicative elaboration of an additive equivariant infinite loop space machine that manufactures orthogonal $G$-spectra from symmetric monoidal $G$-categories. The new machine produces highly structured associative ring and module $G$-spectra from appropriate multiplicative input. It relies on new operadic multicategories that are of considerable independent interest and are defined in a general, not necessarily equivariant or topological, context. Most of our work is focused on constructing and comparing them. We construct a multifunctor from the multicategory of symmetric monoidal $G$-categories to the multicategory of orthogonal $G$-spectra. With this machinery in place, we prove that the equivariant BPQ theorem can be lifted to a multiplicative equivalence. That is the heart of what is needed for the presheaf reconstruction of the category of $G$-spectra in arXiv:1110.3571.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا