ﻻ يوجد ملخص باللغة العربية
We extend the model of exciton-plasmon materials to include a ro-vibrational structure of molecules using wave-packet propagations on electronic potential energy surfaces. The new model replaces conventional two-level emitters with more complex molecules allowing to examine the influence of alignment and vibrational dynamics on strong coupling with surface plasmon-polaritons. We apply the model to a hybrid system comprising a thin layer of molecules placed on top of a periodic array of slits. Rigorous simulations are performed for two types of molecular systems described by vibrational bound-bound and bound-continuum electronic transitions. Calculations reveal new features in transmission, reflection and absorption spectra including the observation of significantly higher values of the Rabi splitting and vibrational patterns clearly seen in the corresponding spectra. We also examine the influence of anisotropic initial conditions on optical properties of hybrid materials demonstrating that the optical response of the system is significantly affected by an initial pre-alignment of the molecules. Our work demonstrates that pre-aligned molecules could serve as an efficient probe for the sub-diffraction characterization of the near-field near metal interfaces.
Recent experiments have observed that the chemical and photophysical properties of molecules can be modified inside an optical Fabry-Perot microcavity under collective vibrational strong coupling (VSC) conditions, and such modification is currently n
We present a model for exciton-plasmon coupling based on an energy exchange mechanism between quantum emitters (QE) and localized surface plasmons in metal-dielectric structures. Plasmonic correlations between QEs give rise to a collective state exch
We study theoretically the interactions of excitonic states with surface electromagnetic modes of small-diameter (~1 nm) semiconducting single-walled carbon nanotubes. We show that these interactions can result in strong exciton-surface-plasmon coupl
Recently realized higher order topological insulators have taken a surge of interest among the theoretical and experimental condensed matter community. The two-dimensional second order topological insulators give rise to zero-dimensional localized co
Strong light-matter interactions in both the single-emitter and collective strong coupling regimes attract significant attention due to emerging quantum and nonlinear optics applications, as well as opportunities for modifying material-related proper